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Humans as well as some nonhuman animals can estimate object numerosities—such as the number of
sheep in a flock—without explicit counting. Here, we report on a negative time-order effect (TOE) in this
type of judgment: When nonsymbolic numerical stimuli are presented sequentially, the second stimulus
is overestimated compared to the first. We examined this “recent is more” effect in two comparative
judgment tasks: larger–smaller discrimination and same–different discrimination. Ideal-observer mod-
eling revealed evidence for a TOE in 88.2% of the individual data sets. Despite large individual
differences in effect size, there was strong consistency in effect direction: 87.3% of the identified TOEs
were negative. The average effect size was largely independent of task but did strongly depend on both
stimulus magnitude and interstimulus interval. Finally, we used an estimation task to obtain insight into
the origin of the effect. We found that subjects tend to overestimate both stimuli but the second one more
strongly than the first one. Overall, our findings are highly consistent with findings from studies on TOEs
in nonnumerical judgments, which suggests a common underlying mechanism.

Public Significance Statement
This study shows that numerical judgments are influenced by a time-order bias: When viewing two
sets of objects after one another, the number of objects in the second set is systematically
overestimated. We characterize the empirical properties of this effect in a range of numerical
judgment tasks and discuss the implications of our findings for studies on numerical cognition.
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Imagine walking in the countryside. In a large field you spot two
flocks of sheep, one with only white sheep and one with only
black, and you make a snapshot judgment of whether there are
more white than black sheep. Later, you encounter another two
flocks of sheep. This time they emerge from a tunnel, one flock
after the other, separated by a brief time interval. Once again, you
test your judgment skills by deciding which of the two flocks is
more numerous. Will the temporal order in which the two flocks
were encountered have influenced your impression of their num-

ber? Studies of numerical judgment have thus far implicitly as-
sumed that this is not the case. Here, we question this assumption
and find that it is incorrect: When humans make numerical judg-
ments of two sequentially presented stimuli, the latter is generally
overestimated relative to the former, a phenomenon that we term
the “recent is more” effect.

Estimating the number of sheep in a flock without explicitly
counting them is an instance of nonsymbolic numerosity estima-
tion. It has been suggested that humans as well as nonhuman
animals are equipped with a dedicated approximate number system
to support nonsymbolic numerical judgments (Dehaene, 1997;
Feigenson, Dehaene, & Spelke, 2004), but other studies have
challenged this claim and have suggested instead that numerical
estimates are partially or even fully derived from higher level
visual cues (Gebuis & Reynvoet, 2012a, 2012b, 2012c; Tokita &
Ishiguchi, 2013). Regardless of the underlying mechanism, it is
quite generally agreed upon that humans can make fast estimates
of nonsymbolic numerosities without the use of explicit counting.
The precision of such estimates has been found to obey Weber’s
law, meaning that they become increasingly imprecise as numer-
osity increases (Dehaene, 2003; Dehaene, Dehaene-Lambertz, &
Cohen, 1998; Mechner, 1958; Whalen, Gallistel, & Gelman,
1999). Moreover, studies with children have suggested that the
precision of a person’s numerical judgments—typically quantified
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as a Weber fraction—is predictive of mathematical ability (Hal-
berda, Mazzocco, & Feigenson, 2008; Inglis, Attridge, Batchelor,
& Gilmore, 2011), but findings from studies on adults have been
mixed (Gebuis & van der Smagt, 2011; Inglis et al., 2011; Price,
Palmer, Battista, & Ansari, 2012).

Two types of task are commonly used to measure the preci-
sion of a subject’s numerical judgments. In estimation tasks,
subjects directly report the numerosity of a stimulus (e.g., a
collection of dots). Such estimates are often biased: In some
contexts, subjects may systematically underestimate numeros-
ity, whereas in others they may overestimate it (Crollen, Cas-
tronovo, & Seron, 2011). In binary-decision tasks, subjects are
presented with two stimulus arrays— either simultaneously or
sequentially—and make a comparative judgment, such as
“Which array contained more dots?” or “Did both arrays con-
tain the same number of dots?” Studies on numerical judgment
have rarely, if ever, addressed possible effects of bias in these
tasks: It is commonly assumed either that if a bias exists, it is
the same in both stimulus arrays and cancels out at the decision
stage or is canceled out by counterbalancing the stimuli. Either
way, any unaddressed bias impoverishes an experimenter’s
estimate of the precision of a subject’s numerical estimates,
because errors due to bias would be interpreted as errors due to
imprecise numerical estimates.

The assumption that numerical comparisons are free of bias is
questionable when numerosities are judged sequentially, because it
is well documented that the temporal order in which stimuli are
presented often does induce a bias. Fechner was probably the first
to report on this, when he found that the probability of a correct
weight-comparison judgment depended on whether an incre-
mented weight was lifted before or after the standard weight
(Fechner, 1860). Since then, time-order effects (TOEs) have been
found in a broad range of judgments, such as successive compar-
ison of temporal intervals (Allan, 1977; Eisler, Eisler, & Hell-
ström, 2008; Jamieson & Petrusic, 1975), line lengths (Tresselt,
1944), tone loudness (Postman, 1946), auditory pitch (Tresselt,
1948), and visual contrast (Alcalá-Quintana & García-Pérez,
2011). A frequent finding in such studies has been that the second
stimulus is estimated with a relatively larger magnitude (i.e.,
judged as longer, louder, or brighter than the first stimulus), but
effects of opposite direction have also been found. The sign and
magnitude of the TOE typically change with the stimulus magni-
tude, and these changes are further modulated by the length of the
interstimulus interval (ISI; Hellström, 1985).

Surprisingly little is known about TOEs in judgments of non-
symbolic numerical stimuli. Several studies have reported indica-
tions of TOEs in pigeons (e.g., Fetterman & MacEwen, 1989;
Santi, Lellwitz, & Gagne, 2006), and one study with humans has
reported that a group of extensively trained subjects discriminated
15 from 16 visual objects more accurately when the larger set was
displayed last (Becker, 1957). However, a detailed study of TOEs
in human numerical judgment is currently lacking.

Here, we report on a series of experiments aimed at character-
izing both the prevalence and properties of TOEs in human nu-
merical judgment. We quantify the effect in three commonly used
numerical judgment tasks, examine how it interacts with stimulus
magnitude and interstimulus interval, report on individual differ-
ences, and compare our results with those of previous reports of
TOEs in other kinds of judgment. Our findings demonstrate that

TOEs are highly prevalent and share similarities with TOEs in
nonnumerical judgments, which suggests a common underlying
mechanism.

Study 1: Time-Order Effects in Two Numerical
Judgment Tasks

Method

Larger–smaller judgment task. On each trial, arrays of yel-
low and blue dots were presented sequentially and the subject
reported which of the two arrays contained more dots (see Figure
1a, left side). Each array was viewed for 200 ms, and the two
arrays were separated by a 300-ms interstimulus interval. Subjects
were tested on numerosity ratios 1:2, 3:4, 5:6, 7:8, and 9:10.
Constraining the total number of dots in a pair to the range [10,
30], the 12 unique pairs of numerosities were (5, 6), (5, 10), (6, 8),
(6, 12), (7, 8), (7, 14), (8, 16), (9, 10), (9, 12), (10, 12), (12, 16),
and (14, 16). Each subject finished 40 trials at each ratio, giving a
total of 200 trials per subject. At each trial, a random numerosity
pair consistent with the ratio chosen for that trial was chosen from
the available pairs. Both the color order (blue first vs. yellow first)
and numerosity order (larger first vs. smaller first) were counter-
balanced and randomized from trial to trial. The dots varied
randomly in size, with radii ranging from .25 to .50 degrees of
visual angle. They were randomly placed inside a central square
area of 17 � 17 degrees of visual angle, with the constraint that no
two dots should overlap. To reduce the potential use of perceptual
cues, we matched dot arrays for total area on half of the trials and
for average dot size on the other half of the trials (Halberda et al.,
2008). Subjects reported which dot array—blue or yellow—was
more numerous by pressing a color-coded keyboard button. They
did not receive feedback about their performance.

Same–different judgment task. This task was identical to
the larger–smaller judgment task except for the following differ-
ences. On half of the trials, both arrays had the same number of
dots. The task of the subjects was to report whether the number of
blue dots was the same as or different from the number of yellow
dots. In total, there were 21 unique pairs of numerosities: 12
“different” pairs, which were the same as those used in the larger–
smaller judgment task, and nine “same” pairs in which both arrays
contained 5, 6, 7, 8, 9, 10, 12, 14, or 16 dots.

Subjects. A total of 30 undergraduate students (10 male) from
Uppsala University with a mean age of 26.1 years (SD � 6.6) were
recruited to participate in this study. Subjects performed both tasks
in a single experimental session.1 The order in which subjects
performed the two tasks was counterbalanced. Subjects received a
cinema voucher or course credits for their participation. One
subject was excluded from the analyses because of unreliable
model parameter estimates (see the online supplemental materials
for details on the exclusion criterion).

Models. We fitted three ideal-observer models to
individual data sets, with two goals in mind: (1) to obtain

1 The subjects also performed both tasks with parallel stimulus presen-
tations and an arithmetic fluency test. The data of those experiments were
collected for purposes that are not relevant to the present study and will be
presented elsewhere.
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subject-level estimates of TOEs and (2) to perform subject-
level hypothesis testing by means of formal model comparison.
Here, we give a brief description of the most general
version of our model—the other two models were constrained

variants of it and are introduced later. The most general version
of our model was derived from the following four assumptions
(see the online supplemental materials for mathematical de-
tails):
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Figure 1. Design and results of Study 1. In all three panels, the left figure refers to the larger–smaller judgment task
and the right figure to the same–different judgment task. Panel a: Cartoons of trial sequences in both tasks. diff �
different. Panel b: Subject-averaged data (markers) and fits of the ideal-observer model with a magnitude-dependent
time-order effect (curves). Error bars and shaded areas represent 1 SEM across subjects. The data and fits are split by
the temporal order in which the blue and yellow array were presented. The separation between these curves indicates
a negative time-order effect: The numerosity of the second presented stimulus was overestimated relative to that of
the first. The nonsmoothness of the model predictions is due to unequal distributions of stimulus magnitudes across
blue–yellow ratios. Panel c: Individual-subject estimates of time-order effects, based on the best-fitting parameter
values of the model with a magnitude-dependent time-order effect. The estimates are sorted by strength of evidence
for the existence of a time-order effect (indicated by shades of gray in the bars [or color in the online version of the
figure]). Negative effects correspond to “recent is more,” and positive ones to “recent is less.” Due to the dependence
on stimulus magnitude, estimated effect sizes varied across trials. Each bar indicates the range of estimated effects
across all of a subject’s trials. Hence, one end corresponds to the predicted effect size at trials with the smallest
stimulus magnitude (11), and the other to the predicted effect size at trials with the largest stimulus magnitude (30).
When a bar is marked with a diamond at one end, it means that the model with a magnitude-dependent time-order
effect received more evidence than did the models with a fixed or no time-order effect. The location of the marker
indicates direction of the magnitude effect: A marker on the left indicates that the time-order effect decreased with
stimulus magnitude, and a marker on the right indicates an increase. Note that in most cases, a decrease in effect size
meant an increase in effect strength (from negative to more negative) See the online article for the color version of
this figure.
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1. Numerosities are internally represented on a logarithmic
scale and corrupted by Gaussian noise (Dehaene, 2003;
Nieder & Miller, 2003). The standard deviation of the
noise distribution is a free parameter, � (see Figure S1a
in the online supplemental materials).

2. Subjects use a decision strategy based on signal detection
theory (Green & Swets, 1966). For the larger–smaller
judgment task, this simply means that the observer re-
ported “blue” whenever the observed number of blue dots
was larger than the observed number of yellow dots and
reported “yellow” otherwise (see Figure S1b in the online
supplemental materials). For the same–different task, the
decision rule was to report “same” whenever the differ-
ence in observed numerosities was within a range [�c,
c], where criterion c is a free parameter (see Figure S1c).

3. Observations may be subject to a color-induced bias.
This bias is captured by a free parameter �blue, whose
value is added to the subject’s estimate of the numerosity
of the blue array.

4. Observations may be subject to a bias induced by the
presentation order of stimuli (i.e., a TOE), whose sign
and magnitude may depend on stimulus magnitude (Hell-
ström, 1985; Michels & Helson, 1954; Needham, 1935;
Woodrow, 1935). This bias is captured by a model vari-
able denoted �1st, whose value is added to the subject’s
observation of the numerosity of the first of the two
presented stimuli. We relate �1st linearly to stimulus
magnitude, which we define as the average numerosity in
both arrays (in log units), such that

�1st � � � � · �log(Nblue) � log(Nyellow)
2 �,

where � and � are free parameters.
The parameters of greatest interest are � and �, because they

characterize the magnitude of the observer’s TOE, �1st, and its
dependence on stimulus magnitude. When �1st has a positive
value, the observer overestimates the numerosity of the first array
relative to that of the second, which by convention corresponds to
a positive TOE (Fechner, 1860).

Note that in this model, the effect of adding �1st to the observed
numerosity of the first array is equivalent to subtracting the same
value from the observed numerosity of the second array. There-
fore, we could estimate only relative biases with the current
experiment. For example, a positive estimate of �1st would be
consistent with an overestimation of the numerosity of the first
array, an underestimation of that of the second array, or a combi-
nation of both.

Parameter fitting. The model for the larger–smaller task has
four free parameters: �, �blue, �, and �. The model for the same–
different task has one additional parameter, namely decision cri-
terion c. We used Matlab’s fminsearch function to estimate the
maximum-likelihood values of these parameters (MATLAB Opti-
mization Toolbox, 2015).

Estimation of time-order effect sizes. Due to the dependence
on stimulus magnitude, the predicted effect size in our model
varies across trials. To get a measure of a subject’s effect size, we

computed the predicted values of �1st (see Assumption 4 earlier in
the text) across all of the subject’s trials, using her best-fitting
estimates of parameters � and �. For presentation purposes, we
converted the �1st values to percentage overestimation.2 We report
both the range and mean of these values.

Group-level hypothesis testing. We used Bayesian t tests to
quantify the amount of evidence for group-level hypotheses (JASP
Team, 2016; Morey & Rouder, 2015; Rouder, Morey, Speckman,
& Province, 2012), which is a principled alternative to the fre-
quentist t test (Rouder, Speckman, Sun, Morey, & Iverson, 2009).
The outcome of such a test is a Bayes factor, that is, the ratio
between the evidence in favor of the null hypothesis and the
evidence in favor of the alternative hypothesis. Bayes factors are
more intuitive than are p values and have several other advantages.
First, they do not suffer from the fallacy that “absence of evidence
is not evidence of absence”: Unlike a large p value, a large Bayes
factor can perfectly be interpreted as strong evidence in favor of
the null hypothesis. Second, and related to this, whereas p values
randomly vary between 0 and 1 if the null hypothesis is true, the
expected Bayes factor increases monotonically as one gathers
more data.

Subject-level hypothesis testing. We tested two hypotheses
at the level of single subjects, the second one being a strong
version of the first one: (1) a TOE is present and (2) a TOE is
present with a strength that depends on stimulus magnitude. To
measure the evidence for these hypotheses, we fitted three models
to each data set: (1) the “full” model (described earlier), which has
a TOE that depends on stimulus magnitude; (2) a reduced variant,
in which the TOE is constant (i.e., � � 0); and (3) a yet further
reduced variant without a TOE (i.e., � � 0 and � � 0). We refer
to these models as M2, M1, and M0, respectively. For all three
models, we computed the Akaike information criterion (AIC),
which is a likelihood-based measure of goodness of fit that takes
into account differences in numbers of free parameter (Akaike,
1974). For ease of interpretation, we converted the AIC values to
Akaike weights (Burnham, Anderson, & Huyvaert, 2011; Wagen-
makers & Farrell, 2004). These weights sum to 1 and represent the
relative evidence for a model.

Considerations about statistical power. Statistical power—
that is, the probability of rejecting a null hypothesis given that a
specific alternative hypothesis is true—is a concept that is useful in
the context of null-hypothesis significance testing (NHST). How-
ever, as described earlier, we avoided any form of NHST by using
Bayesian and model-based approaches instead. In a sense, Bayes
factors and Akaike weights are themselves measures of power:
The more a Bayes factor deviates from 1 and the closer an Akaike
weight is to 0 or 1, the less likely it is that one erroneously accepts
a false hypothesis or rejects a true one. Moreover, we performed
most of our analyses at the level of single subjects, which means
that every subject can be considered as a study replication. For
these reasons, a power analysis was not possible or necessary.

2 For example, a �1st value of .15 would translate to 16.2% relative
overestimation. To see this, recall that numerosities are internally repre-
sented in logarithmic units. Hence, if the internal representation of the
numerosity of the first array equals n1st and there is no bias, then the
subject’s numerosity estimate is Nunbiased � exp(n1). In the example of
�1st � .15, the numerosity estimate is Nbiased � exp(n1st 	 .15) �
exp(n1st) � exp(.15) 
 Nunbiased � 1.162 � Nunbiased 	 16.2%.
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Data and code sharing. All data and analysis code are publicly
available at https://uppsalacognitionlab.github.io/RecentIsMore.

Results

Group-level analysis of time-order effects on task accuracy.
As a first test of whether a TOE exists in our data, we computed
for both tasks the percentage of correct responses separately for the
trials in which the more numerous array was presented first and for
the trials in which it was presented last.3 The prediction is that if
there is no TOE, there should obviously be no reliable difference
in accuracy on both types of trial. Alternatively, in the case of a
negative TOE (i.e., an underestimation of the numerosity of the
first stimulus array relative to that of the second), observed nu-
merosity differences will have been magnified on trials in which
the more numerous array was presented last and reduced on trials
in which it was presented first, predicting increased performance in
the former subset of trials and decreased performance in the latter.
Opposite effects on accuracy are predicted in the case of a positive
TOE (i.e., an overestimation of the numerosity of the first stimulus
array relative to that of the second).

In the larger–smaller judgment task, subjects were correct on
92.0% � 1.2% of the trials in which the more numerous array was
presented last, versus 75.8% � 2.1% of the trials in which it was
presented first (throughout the article, X � Y stands for mean plus
or minus the standard error of the mean across subjects). We used
a Bayesian paired samples t test to quantify the statistical evidence
for the hypothesis that presentation order has an effect on accu-
racy. We found a Bayes factor (BF) of 12.6 � 103 in favor of the
hypothesis that accuracy was higher when the more numerous
array was presented last (relative to the hypothesis that accuracy
was lower or equal when the more numerous array was presented
last). Similarly, accuracy in the same–different task was 77.0% �
2.4% when the more numerous array was presented last, versus
64.2% � 3.0% when it was presented first. Also here, a Bayesian
t test strongly favored the hypothesis that there is a negative TOE
(BF � 77.9). These results suggest that the numerosity of the
second array was on average overestimated relative to that of the
first, a negative TOE that we refer to as the recent-is-more effect.
In the psychometric curves, the effect is clearly visible as a
time-order-induced shift (see Figure 1b). The trends in Figure 1b
also show that the effect cannot be explained as a simple response
bias: Although the shifts in the larger–smaller task could poten-
tially be explained as such (e.g., “When uncertain, report the color
of the last presented array”), no response-bias explanation can
account for the order-induced separation of curves in the same–
different task.

Characterization of time-order effects at the level of indi-
vidual subjects. We next characterized the identified effects in
more detail, by seeking answers to the following four questions:
(1) What proportion of subjects exhibits evidence for a TOE? (2)
What proportion of identified TOEs depend on stimulus magni-
tude? (3) What is the dominant sign of the TOEs: Do all individual
effects reflect the negative group-level effect (“recent is more”), or
are there also subjects with a positive TOE? and (4) Are the effect
sizes task dependent? We approached these questions by fitting
three models to the data (see the Method section for details): one
without a TOE (M0), one with a TOE that did not depend on
stimulus magnitude (M1), and one with a TOE that depended

(linearly) on stimulus magnitude (M2). For each subject, we quan-
tified the amount of evidence for each model in terms of Akaike
weights, which sum to 1 and represent the relative evidence for a
model. For example, if model M0 has an Akaike weight of .05, M1

a weight of .70, and M2 a weight of .25, then there is strong
evidence for a TOE but not for a dependency of effect size on
stimulus magnitude (see the Method section for details).

Model fits. Overall, the most flexible model, M2, accounted
well for the data (see Figure 1b), which justifies using the model
as a tool to identify and characterize TOEs in these data. Note that
the nonsmoothness of the model fits is caused by the fact that the
model predictions depend on both the numerosity ratio and the
stimulus magnitude; the curves would be smooth if the stimulus
magnitude were held constant across ratios or if predictions did not
depend on stimulus magnitude (as in models M0 and M1).

What proportion of subjects exhibits evidence for a time-
order effect? Both models M1 and M2 incorporate a TOE. The
evidence in favor of a hypothesis that is represented by two models
is obtained by summing the Akaike weights for those models
(Wagenmakers & Farrell, 2004).4 Therefore, we computed the
evidence in favor of the hypothesis that a TOE was present in a
subject’s data set by summing the Akaike weights of models M1

and M2. If this summed weight exceeded the weight of the model
without a TOE (i.e., if it exceeded .50), then the evidence was in
favor of the hypothesis; moreover, if it exceeded .90, then we
considered the evidence to be strong (Burnham et al., 2011). Using
this approach, we found evidence of a TOE for 23 subjects in the
larger–smaller judgment task and for 24 subjects in the same–
different judgment task (out of a total of 29 subjects); 18 and 16 of
these cases, respectively, constituted strong evidence (see Figure
1c). Hence, we found, combined across tasks, evidence of a TOE
in 81.0% of the individual data sets (47 out of 58 cases).

What proportion of the identified time-order effects depend
on stimulus magnitude? Next, we examined what proportion of
the identified effects exhibited evidence for a dependence on
stimulus magnitude, again by studying the Akaike weights: If the
weight of model M2 was larger than both the Akaike weight of M0

and that of M1, then the evidence was in favor of a dependence;
again, when this weight exceeded .90, we considered the evidence
to be strong. We found evidence of a dependence for 12 subjects
in the larger–smaller judgment task (out of 23 who showed evi-
dence for a TOE; see earlier) and for 11 (out of 24) in the
same–different judgment task; four and six of these cases, respec-
tively, constituted strong evidence. Hence, for nearly half of the
identified TOEs (23 out of 47), there was evidence for a depen-
dence on stimulus magnitude. The direction of the dependency was
strongly consistent: In 21 of these 23 cases, the TOE became more
negative or less positive with stimulus magnitude (indicated in
Figure 1c with diamond markers located on the left end of a bar).

What is the dominant sign of the time-order effects?
Although several subjects showed both negative and positive
TOEs—depending on the stimulus magnitude—the large majority
of effects were negative: In 85.1% (40 of the 47) of the data sets

3 In the same–different task, this analysis could obviously be done on
only the “different” trials.

4 If this seems unfair, one should realize that when a hypothesis is shared
by multiple models, the total evidence for the hypothesis is not artificially
increased but is instead spread out over these models.
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that contained evidence for a TOE, the sign of the average effect
was negative, that is, a recent-is-more effect (see Figure 1c).
Averaged across all subjects, the estimated effect size was 8.5% �
1.5% relative overestimation of the second stimulus in the larger–
smaller judgment task and 8.6% � 2.9% relative overestimation of
the second stimulus in the same–different judgment task.

Is the time-order effect task dependent? Finally, we refitted
the model to both data sets simultaneously with a single set of
parameters (�, �blue, �, �, and c) to test for task dependence of the
observed effects. We found that for 15 of the 29 subjects, a
comparison based on Akaike weights favored the model in which
all parameters were shared across the two tasks (in eight of those
cases, the evidence was strong). This suggests that the TOE (as
well as the internal noise and color bias) was very similar in both
tasks. Moreover, finding that a single set of parameters can ac-
count for multiple data sets provides support for the plausibility of
a model (Lee, 2011).

Discussion

The results of Study 1 (summarized in Table 1) provide clear
evidence for the presence of a TOE in two different numerical
judgment tasks: When comparing two sequentially presented nu-
merical stimuli, subjects tended to overestimate the second stim-
ulus compared to the first one. In the terminology of Fechner
(1860), this would classify as a negative TOE. Overall, the TOE
results of Study 1 are consistent with those observed in other types
of judgment (Hellström, 1985): First, we found that the effects
were predominantly negative, that is, a relative underestimation of
the first stimulus compared to the second; second, the magnitude
of the effect depended on the magnitude of the stimulus (the larger
the stimulus, the stronger the TOE tended to be); third, there were
rather large individual differences in effect sizes. Moreover, we
found that for the majority of subjects we were able to explain the
data from both tasks using a single set of parameters, which
suggests that TOEs in numerical judgments do not strongly depend
on the task. This latter finding contrasts that in a previous study
that found a difference between TOEs in larger–smaller versus
same–different judgments using a sound duration judgment task
(Dyjas & Ulrich, 2014).

In both experiments of Study 1, we held the interstimulus
interval (ISI) constant at 300 ms. However, studies of TOEs in
nonnumerical judgments have reported that ISI is an important
factor to consider, because it has been found to interact with the
effect that stimulus magnitude has on the TOE (Hellström, 1979,
2003). Both negative and positive TOEs are typically found at
every ISI, with the magnitude and sign of the effect changing with
stimulus magnitude. It is intriguing that the direction of this change
has often been found to depend on the ISI. Next, in Study 2 we
examine how ISI affects TOEs in numerical comparisons and
whether it interacts with stimulus magnitude.

Study 2: Effect of ISI on Time-Order Effects in
Numerical Judgment

Method

Larger–smaller judgment task. The task was the same as in
Study 1 (see Figure 1a, left side), except for the following differ-
ences. In three separate experimental sessions, each subject was
tested with interstimulus intervals (ISIs) of 50 ms, 300 ms, and
2,000 ms. The order of the sessions was randomized across sub-
jects. Presented numerosity ratios were 3:4, 5:6, 7:8, and 9:10 and
consisted of the following pairs: (5, 6), (6, 8), (7, 8), (9, 10), (9,
12), (10, 12), (12, 16), and (14, 16). Each pair was repeated 30
times, giving a total of 240 trials per ISI per subject. The dots
varied randomly in size, with radii ranging from .50 to .90 degrees
of visual angle. They were randomly placed inside a central square
area of 13 � 13 degrees.

Subjects. Eighty-five undergraduate students (30 male) from
Uppsala University with a mean age of 25.2 years (SD � 5.8) were
recruited for this study. They received a cinema voucher or course
credits for their participation. Three subjects were excluded from
the analyses because of unreliable parameter estimates (see the
online supplemental materials for details on the exclusion crite-
rion).

Analysis. We used the same statistical methods and models as
in Study 1. In addition, we fitted the sensation-weighting model
(Hellström, 1979, 2000, 2003), which has been used previously to
account for TOEs in a broad range of nonnumerical comparative

Table 1
Prevalence and Strength of Time-Order Effects in Studies 1 and 2

Study and
task

ISI
(ms)

No. data sets with evidence for . . . Estimated average
effect size (%

overestimation of
2nd stimulus)

Accuracy difference
between largest 2nd and

largest 1st trials (%)

Estimated
internal Weber

fraction (�)
Absence of

TOEa
Presence of

TOEb
Presence of TOE that depends

on stimulus magnitudec

Study 1
L–S 300 6 23 12 8.5 � 1.2 16.2 � 2.8 .134 � .013
S–D 300 5 24 11 8.6 � 2.9 12.8 � 3.4 .112 � .009

Study 2
L–S 50 11 71 30 6.3 � 1.0 13.2 � 1.9 .168 � .012
L–S 300 10 72 38 6.65 � .80 15.2 � 1.6 .158 � .009
L–S 2,000 4 78 61 10.3 � 1.1 20.7 � 1.7 .165 � .008

All combined 36 268 152 7.91 � .55 16.0 � .9 .156 � .005

Note. ISI � interstimulus interval; TOE � time-order effect; L–S � larger–smaller; S–D � same–different.
a Number of data sets with Akaike weight for model M0 greater than .50. b Number of data sets with Akaike weight for model M0 smaller than
.50. c Number of data sets with Akaike weight for models M0 � .50 and M2  M1.
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judgments. Inspired by the theory offered by Michels and Helson
(1954), this model postulates that the inputs to the comparison
process are not the stimulus observations themselves but weighted
averages between each stimulus observation and a reference level
(see Figure S2 in the online supplemental materials for a graphical
illustration). Accordingly, the subjective difference between two
stimuli takes the form d � [s1n1 	 (1–s1)�R] – [s2n2 	 (1–s2)�R],
where s1 and s2 are the “sensation weights,” n1 and n2 are the noisy
stimulus observations, and �R is the reference level (see the online
supplemental materials for more details). The model predicts a
TOE when s1 � s2. One of the main merits of the model is that it
automatically predicts an effect of stimulus magnitude. Moreover,
it can describe the interaction effect of ISI and stimulus magnitude
on TOEs as relative changes in weights s1 and s2 induced by
differences in the ISI.

Results

General observations. At all three ISIs, the psychometric
curves contained clear evidence for a TOE (see Figure 2a). To
estimate individual effect sizes, we fitted the same three models as
in Study 1: a model without a TOE (M0), a model with a constant
TOE (M1), and a model with a TOE that depended (linearly) on
stimulus magnitude (M2). Overall, the most flexible model (M2)
accounted well for the data (see Figure 2a). As in Study 1, we
found evidence for a TOE in the large majority of data sets, and the
estimated effects were mainly negative (see Figure 2b).

Group-level analysis of the effect of ISI. To assess at the
group level whether there was evidence for a main effect of ISI and
an interaction with stimulus magnitude, we performed a Bayesian
analysis of variance (ANOVA) with �1st (see the Method section
of Study 1) as the dependent variable, ISI and stimulus magnitude
as fixed factors, and subject number as a random factor. This
statistical test quantifies the evidence for each of five models: H0,
the null model (no main effects and no interaction); H1, a model
with a main effect of only ISI; H2, a model with a main effect of
only stimulus magnitude; H3, a model with both main effects but
no interaction; and H4, a model with both main effects and an
interaction. We found that the model with both main effects and an
interaction was strongly favored over the four alternative models,
with Bayes factors of 1.21 � 10123 (H4 vs. H0), 1.97 � 10103 (H4

vs. H1), 1.98 � 1085 (H4 vs. H2), and 8.40 � 1062 (H4 vs. H3).
Hence, at the group level, the data contain overwhelmingly strong
evidence for an interaction effect of ISI and stimulus magnitude on
TOE size.

Subject-level analyses of the effect of ISI. To obtain insight
into the nature of the interaction, we next examined the subject-
level model fits in more detail. Using the same method as in Study
1, we found evidence for a TOE for 71, 72, and 78 of the subjects
in the ISI � 50, 300, and 2,000 ms conditions, respectively (out of
a total of 82 subjects); in 51, 52, and 70 of these cases, respec-
tively, the evidence was strong. The nature of the interaction effect
becomes clear when looking at the estimated relation between
stimulus magnitude and TOE for these subjects (see Figure 2c): At
the shortest ISI, the TOE slightly increases on average with stim-
ulus magnitude (� � .016 � .018), but this reverses at the
intermediate ISI (� � �.058 � .016) and more strongly so at the
longest ISI (� � �.19 � .012). Note, however, that at all three
ISIs the TOE is predominantly negative (relative overestimation of

the second stimulus), such that a decrease means that the effect
became more negative, that is, stronger. Note also that there is
considerable individual variability at each ISI. We found that for
39 out of 82 subjects, a model with all parameters shared between
the three ISIs provides a better fit, in terms of Akaike weights, than
does fitting them separately. Hence, for almost half of the subjects,
there is no evidence for an interaction effect, meaning that the
interaction is driven by a subset of the subjects.

Fits of the sensation-weighting model. The interaction effect
reported earlier shares similarities with previously reported inter-
action effects in comparative judgments of nonnumerical stimuli
(Hellström, 1985). The currently most comprehensive model to
account for such effects is the sensation-weighting model (Hell-
ström, 1979, 2000, 2003). The essence of this model is that the
inputs to the comparison process are not the stimulus observations
themselves but weighted averages of each stimulus observation
and a reference level (see the Method section and the online
supplemental materials for details). When the sensation weights
are not equal to each other, the model predicts a TOE that depends
on stimulus magnitude. Moreover, it describes the interaction
effect between ISI and stimulus magnitude as a reversal of the
relative size of the sensation weights.

We fitted a slightly modified version (see the online supplemen-
tal materials) of the general formulation of the sensation-weighting
model (Hellström, 1979, 1985, 2000; Patching, Englund, & Hell-
ström, 2012) and found that it fitted the data equally well5 as
model M2. Hence, the main difference between the models does
not lie in their quantitative predictions (which are apparently
near-identical for this experiment) but is purely conceptual: M2

captures the TOE as a simple bias and remains agnostic about the
origin of this bias, whereas the sensation-weighting model ac-
counts for the TOE through an interplay between sensation
weights and an adaptation level. We found that, consistent with
results of earlier work that used the sensation-weighting model,
this model describes the interaction effect of ISI and stimulus
magnitude on the TOE in Study 2 as a change in the relative values
of the sensation weights: the longer the ISI, the larger the weight
of the second stimulus compared to that of the first (see Figure 3).

Discussion

The results of Study 2 are summarized in Table 1. We draw four
conclusions from these results. First, they are broadly consistent
with those from Study 1: We found strong evidence for TOEs,
most of these were negative (i.e., recent is more), and there was
considerable variability in individual effect sizes. Second, they
reveal an interaction between ISI and stimulus magnitude on TOE
size: At short ISI, TOEs became on average weaker (less negative)
as a function of stimulus magnitude, whereas at higher ISIs they
tended to become increasingly stronger (more negative) with
larger stimulus magnitudes. Third, this interaction effect is like
effects found in other types of comparative judgment (Hellström,

5 Across all 246 fits (82 subjects � 3 ISI conditions), the average
maximum-likelihood difference was .028 � .007 and the maximum abso-
lute difference was .77. This suggests that the models make identical
quantitative predictions for this task.
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1985). Fourth, the sensation-weighting model (Hellström, 1979,
1985, 2000) accounts well for these data. When one combines
these observations with the similarities that already pointed out in
the discussion of Study 1, it starts to appear that the TOE in

numerical judgment is in many ways comparable with TOEs found
in other types of comparative judgment and may thus share the
same underlying mechanism. We come back to this point in the
General Discussion section.

Figure 2. Results of Study 2. Panel a: Subject-averaged data (markers) and fits of the ideal-observer model with a
magnitude-dependent time-order effect (curves). ISI � interstimulus interval. Panel b: Individual-subject estimates of
time-order effect sizes, based on the maximum-likelihood parameter values of the ideal-observer model with a
magnitude-dependent time-order effect. When a bar is marked with a diamond at one end, it means that the model with
a magnitude-dependent time-order effect received more evidence than did the models with a fixed or no time-order
effect. The location of the marker indicates direction of the magnitude effect: A marker on the left indicates that the
time-order effect decreased with stimulus magnitude, and a marker on the right indicates an increase. Note that in most
cases, a decrease meant that the effect became more negative, causing a stronger time-order effect. Panel c: Effects
of stimulus magnitude and ISI on the time-order effect. Despite considerable variability in individual estimates (thin
gray lines), the time-order effect is on average (thick black lines) predominantly negative at every ISI (i.e., subjects
tend to overestimate the second stimulus relative to the first one). How the time-order effect changes with stimulus
magnitude depends on ISI: At the shortest ISI, the time-order effect on average increases with stimulus magnitude,
but this reverts into a decrease at the two longer ISIs. Note that although the model assumes a linear relation between
stimulus magnitude and time-order effect, the displayed relations are slightly curved. This is due to the transformation
from �1st to percentage overestimation, which is nonlinear (see the Method section of Study 1). See the online article
for the color version of this figure.
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Studies 1 and 2 provided a characterization of the prevalence
and main properties of a TOE in comparative numerical judg-
ments. However, due to the design of the experiments, these
studies provided little information about the nature of the effect: It
could be caused by a misjudgment of the first stimulus, a misjudg-

ment of the second stimulus, or a combination of both. Alterna-
tively, it is even possible that both stimuli are perceived without
any bias and that the effect is entirely rooted in the comparison
process. To obtain insight into the nature of the TOE, in Study 3
we used a numerical estimation task in which subjects provided
estimates of both array numerosities without having to compare
them.

Study 3: Time-Order Effects in a Sequential
Numerical Estimation Task

Method

Stimuli and task. On each trial, subjects were presented with
either one or two dot arrays, which we refer to as single-judgment
and double-judgment trials, respectively (see Figure 4a). Exposure
time of each array was 200 ms, and in double-judgment trials, the
arrays were separated by a 300-ms interstimulus interval. Dots
were blue in one array and yellow in the other. The color order was
always the same for each subject but randomized between subjects.
Each array contained 8, 11, or 14 dots, giving nine possible pairs
(e.g., 8–8, 8–11). Each pair was presented eight times in random
order. Intermixed with those 72 trials were 24 single-judgment

ISI (ms)

s 1
/s

2

50 300 2000
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Figure 3. Estimated sensation-weight ratios in the sensation-weight
model fitted to the data of Study 2.
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Figure 4. Design and results of Study 3: estimation of sequentially presented numerosities. Panel a: Cartoons
of trial procedures in single-judgment (left) and double-judgment (right) trials. Y � yellow; B � blue. Panel b:
Comparison of biases. Subjects on average overestimated numerosities in all three judgment types but by
different magnitudes. Error bars represent 1 SEM. Panel c: Comparison of the average amount of overestimation
(left) and variability (right) in responses between the first (black) and second (gray [red in the online version of
the figure]) judgment in double-judgment trials, as a function of array numerosity. Error bars represent 1 SEM.
Std. dev. � standard deviation. See the online article for the color version of this figure.
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trials in which each possible numerosity appeared eight times. The
displays were controlled for average dot size in half of the double-
judgment trials and for cumulative area in the other half (Halberda
et al., 2008). Subjects reported the number of dots in the arrays by
entering a number with the keyboard. The input box on the screen
was color-coded and always occurred in a left–right fashion cor-
responding to first–second temporal position. When subjects
missed a stimulus, they could indicate this by entering an error
code instead of an estimate (this happened on only six trials, which
were excluded from the analyses).

Subjects. Twenty undergraduate students (12 female), with an
average age of 24.8 years (SD � 5.49) were recruited for the study.
They received a cinema voucher or course credits for their partic-
ipation.

Results

Numerosities are overestimated in all three types of
judgment. Subjects on average overestimated the numerosities
by 13.5% � 4.6% in the single-judgment trials and by 11.8% �
4.3% and 19.8% � 4.6% on the first and second judgments,
respectively, in double-judgment trials (see Figure 4b). In all three
cases, a Bayesian one-sample t test supported the hypothesis that
the average bias was larger than 0 (BFs � 11.3, 8.23, and 200,
respectively). These results reveal a general overestimation bias
that is commonly observed in numerical judgments (Crollen et al.,
2011), especially in the absence of feedback (Izard & Dehaene,
2008). No effect of color order (blue–yellow vs. yellow–blue) was
found in the double-judgment trials: For both the first and the
second judgments, a Bayesian t test supported the hypothesis that
the average amount of overestimation was the same for both orders
(BF � 2.47 in both cases).

Comparison of judgment biases in single-judgment and
double-judgment trials. Overestimation on single-judgment tri-
als was on average 1.7% � 1.0% larger and 6.3% � 1.3% smaller
than overestimation of the first and second arrays of double-
judgment trials, respectively (see Figure 4b). A Bayesian paired-
samples t test supported the null hypothesis that there was no
difference in overestimation between single-judgment trials and
the first judgment in double-judgment trials (BF � 1.28 in favor of
the null hypothesis). In contrast, strong evidence was found for a
difference between overestimation in single-judgment trials and
the second judgment in double-judgment trials (BF � 631 in favor
of a difference). Indeed, overestimation of the numerosity of the
second array was on average 8.0% � 1.2% larger than that of the
first array. Hence, the TOE seems to be rooted in an amplification
of the overestimation of the second stimulus induced by the
presence of the first stimulus.

Comparison of estimation precision between first and sec-
ond judgments in double-judgment trials. These findings sug-
gest that the TOE is rooted in a bias in the judgment of the second
stimulus, which would rule out any theory that explains the effect
because of an impoverished precision memory of the first stimulus
(e.g., due to memory decay). To further test this, we conducted a
Bayesian ANOVA with estimation precision as the dependent
variable, stimulus magnitude and stimulus position (first or sec-
ond) as fixed factors, and subject number as a random factor. As
explained in Study 2, this test quantifies the evidence for five
different models: the null model, two models with a single main

effect, a model with both main effects without an interaction, and
a model with both main effects and an interaction. We found that
the test most strongly supported the model with a main effect of
only stimulus magnitude (BF � 58.2 compared to the null model),
closely followed by the model with both main effects (BF � 47.8
compared to the null model) and the model with both main effects
and an interaction (BF � 9.41 compared to the null model). Hence,
there is strong evidence for an effect of stimulus magnitude on
estimation precision but weak evidence against an effect of tem-
poral stimulus position. Moreover, contrary to what a theory based
on memory decay would predict, if there were a difference, then
the precision of the first stimulus estimate would seem to be higher
than that of the second stimulus not lower (see Figure 4c).

Comparison of time-order effects in the estimation task with
time-order effects in the comparison tasks. At first sight, the
relative overestimation of 8.0% � 1.2% of the second stimulus
compared to the first seems quantitatively consistent with the
model-based effect size estimates that we obtained for the com-
parison tasks in Studies 1 and 2 (8.5% � 1.5% and 8.6% � 2.9%
in Study 1 and 6.65% � .80% in Study 2). However, these
estimates are not directly comparable, because the stimuli in Stud-
ies 1 and 2 had different magnitudes, and we found earlier that for
many subjects the effect size depends on stimulus magnitude. To
assess more properly whether the empirical effect sizes measured
in Study 3 are consistent with the model-based estimates from
Studies 1 and 2, we computed for each subject in Studies 1 and 2
the average predicted bias for the trials in Study 3; that is, we
computed �1st � � 	 � � [log(Nblue) 	 log(Nyellow)]/2 using the
best fitting estimates of � and � from Studies 1 and 2 but with
the Nblue and Nyellow pairs from Study 3. We found predicted
average effect sizes of 10.0% � 1.7% in the larger–smaller judg-
ment task of Study 1, 10.4% � 3.4% in the same–different
judgment task of Study 1, and 6.0% � 1.6% in Study 2. In all three
cases, a Bayesian independent-samples t test supported the null
hypothesis that the average predicted effect size was the same as
the empirical effect size found in Study 3, with Bayes factors of
2.51, 3.04, and 2.47, respectively. This suggests that the mecha-
nism underlying TOEs in the estimation task is the same as in the
binary-decision tasks of Studies 1 and 2.

Discussion

The findings from Study 3 provide three important pieces of
information about the nature of TOEs in nonsymbolic numerical
judgment. First, they suggest that the TOE is rooted in an ampli-
fication of the overestimation of the second stimulus: Although
both the first and second stimuli in a sequence are overestimated,
the latter is overestimated more strongly than is the former. Sec-
ond, the results are difficult to reconcile with any theory that
explains the TOE because of an impoverished memory of the first
stimulus, because there is no evidence for such an impoverish-
ment. Third, the finding that TOEs exist even when the two
numerosities do not need to be compared with each other suggests
that the effect is not rooted in the comparison process but occurs
already in the stimulus observations. This suggestion is further
supported by our finding that the estimated effect sizes are quan-
titatively consistent across the larger–smaller, same–different, and
estimation tasks, which had quite different decision processes but
used similar stimuli.
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General Discussion

Research on time-order effects (TOEs) in human judgments has
a long history, dating back to the pioneering work of Gustav
Fechner (1860). It is somewhat surprising that TOEs have hardly
been studied in the context of nonsymbolic numerical judgments.
Here, we examined the prevalence and characteristics of TOEs in
three numerical judgment tasks. Although we found substantial
individual differences in effect sizes, TOEs were highly prevalent
in all three tasks, with a strongly consistent effect direction (see
Table 1 for a summary): Regardless of task, ISI, and stimulus
magnitude, subjects tended to overestimate the second stimulus
relative to the first one. The average effect size was 7.91% �
0.55% relative overestimation of the second stimulus. Although
this may be perceived as a mild effect, we found that it had quite
large behavioral consequences: Accuracy on trials in which the
largest array was presented last was on average 16.0% � .9%
higher than in the trials in which it was presented first. More-
over, we found an interaction effect of ISI and stimulus mag-
nitude on the TOE: At short ISI, the TOE tended to get weaker
(less negative) with larger stimulus magnitudes and in some
cases even reversed sign; at long ISI, on the other hand, the
TOE tended to become stronger (more negative) for larger
stimulus magnitudes.

Implications for Studies on Nonsymbolic
Numerical Cognition

Sequential designs have been widely used in studies on non-
symbolic numerical cognition (e.g., Barth, Beckmann, & Spelke,
2008; Barth et al., 2006; Gebuis & van der Smagt, 2011; Gilmore,
Attridge, & Inglis, 2011; Lindskog, Winman, & Juslin, 2014;
Lyons, Ansari, & Beilock, 2012; Park & Brannon, 2013; Pica,
Lemer, Izard, & Dehaene, 2004; Price et al., 2012; Tokita &
Ishiguchi, 2016). However, none of these studies took the exis-
tence of TOEs into account, which may have led to wrong infer-
ences. For example, these studies have underestimated the preci-
sion with which subjects estimated numerosities, because they may
have confounded errors due to time-order effects with errors due to
precision limitations. Indeed, when we refitted our own data with
a model that ignores TOEs, we found that internal Weber frac-
tions—a common measure of numerical judgment precision (De-
haene, 2007; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004)—
were systematically overestimated by magnitudes up to over 100%
(see Figure S3 in the online supplementary materials). Hence,
future studies that aim to measure numerical judgment precision
should explicitly model TOEs when using sequentially presented
stimuli, and conclusions from some of the previous studies may
need reconsideration.

A second implication of our results relates to the measurement
of people’s numerical judgment precision. There has been much
debate about what is the best way to do this, because different
measures of precision give different results that are not necessarily
correlated (Gebuis & van der Smagt, 2011; Gilmore et al., 2011;
Inglis & Gilmore, 2014; Lindskog, Winman, Juslin, & Poom,
2013; Price et al., 2012). We propose that, based on our present
findings, part of the inconsistencies may be a result of the problem
outlined earlier, namely that measures of numerical judgment
precision may in some cases have been misestimated due to not

accounting for TOEs. Our own data can again be used to illustrate
this point. In Study 1, we found that raw performance measures
(proportion correct) correlated rather weakly between the larger–
smaller and same–different judgment tasks (R2 � .16, p � .029).
However, when we used the internal Weber fraction (i.e., the �
parameter in model M2) as a measure of numerical judgment
precision, we found a strong correlation between the tasks (R2 �
.76, p � 2.79 � 10�10). Hence, when using proportion-correct
scores as a measure of judgment precision, one might conclude
that the tasks do not produce equally valid measures of numerical
judgment precision—as has been done in a previous study (Gebuis
& van der Smagt, 2011)—but when using a measure of precision
that is not contaminated by TOEs, one finds that the tasks produce
highly consistent results and there is no reason to prefer one task
over the other.

Although the existence of TOEs thus mostly seems to com-
plicate matters in nonsymbolic numerical judgment research, it
also provides new opportunities to validate and falsify theories
about the mechanisms underlying nonsymbolic numerical judg-
ments. For example, it has been argued that there are separate
mechanisms for nonsymbolic numerical judgments in low- and
high-density contexts (Anobile, Cicchini, & Burr, 2014, 2016).
This theory makes the testable prediction of a possible discon-
tinuity in time-order effects between numerical judgments in
low- and high-density displays. In addition, some researchers
have questioned the existence of a dedicated approximate num-
ber system and argued instead that humans may estimate nu-
merosity indirectly by combining different visual cues (Gebuis
& Reynvoet, 2012a, 2012b, 2012c; Tokita & Ishiguchi, 2013).
This view predicts that the recent-is-more effect does not stand
by itself but should reduce to a bias in the perception of one or
more of these visual cues (e.g., the second stimulus being
perceived as denser or larger than the first). Testing these two
predictions would provide an opportunity to further increase
understanding of the mechanisms underlying human nonsym-
bolic numerical judgment.

Mechanisms

Our results show that TOEs in nonsymbolic numerical judg-
ments share many similarities with the extensively documented
TOEs in other, nonnumerical judgments: The effects are largely
negative (relative underestimation of the first stimulus), the
effects are affected by both stimulus magnitude and ISI through
an interaction, and effect sizes vary across subjects. This con-
sistency suggests that the TOE in our data has the same under-
lying mechanism as do TOEs in nonnumerical judgments.

In the context of nonnumerical judgments, it has been argued
that TOEs may be explained as a simple response bias (Alcalá-
Quintana & García-Pérez, 2011). However, our results are incon-
sistent with such an explanation, because it cannot explain the
time-order induced shift of psychometric curves in the same–
different judgment task (see Figure 1b). Another, more compre-
hensive explanation of TOEs is the proposal of sensation weight-
ing (Hellström, 1979, 1985, 2000), which states that inputs to the
comparison process are not the stimulus observations themselves
but rather weighted averages between each stimulus observation
and a reference level. This idea has been formalized in the
sensation-weighting model, which we found to account well for
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our data (Study 2). However, we also found that the predictions of
this model are indistinguishable from those of our ideal-observer
model M2. The difference between the models is thus purely
conceptual: Whereas model M2 accounts for TOEs by simply
postulating a magnitude-dependent time-order bias (while stay-
ing agnostic about the cause of this bias), the sensation-
weighting model constructs the bias via a sensation-weighting
mechanism. Future work could try to employ different tasks to
test whether there is any quantitative evidence that supports the
concept of sensation weighting in nonsymbolic numerical cog-
nition.

Function

What could possibly be the function of time-order effects in
nonsymbolic numerical judgment? One appealing proposal—that
motivated the development of the sensation-weighting model—is
that the TOE may be a byproduct of a mechanism that is meant to
increase discriminability between stimuli (Hellström, 1986, 1989).
Per this theory, discriminability of stimuli can be improved when
noisy stimulus representations are weighted with a reference level,
with weights depending on the noise level associated to a stimulus;
when the noise levels differ for the two stimuli, then the optimal
weights differ as well and cause a TOE. Although this idea is
theoretically appealing, two of our findings argue against it.
First, Study 3 showed that TOEs exist even when no compar-
ison must be made. Second, and more important, there was no
noticeable difference in the precision with which both stimuli
are represented (see Figure 4c). In the absence of such a
difference, discrimination will get worse, not better, when using
unequal sensation weights.

Another possibility could be that the TOE is an artifact of a
visual system that is adapted to natural environments rather
than the laboratory setting. Although it is not uncommon in
natural environments that visual stimuli sometimes briefly dis-
appear (e.g., due to an eyeblink), it seems quite rare that a set
of objects is replaced with an entirely new, unrelated set of
objects during such an event. Consider, for example, that one
were witnessing a pack of hungry wolves.6 Suddenly an occlu-
sion event occurs that temporarily obstructs the view, for ex-
ample by a bush, a tree, or an eyeblink. In this situation, it may
be safe for the brain to assume that the wolves one sees after the
occlusion event are not necessarily the same ones one observed
before the occlusion: A subset of the first group could be
temporarily out of view. If a subset of the wolves is uncommon
to both the preocclusion and postocclusion images of the pack,
then it would imply that the pack must be larger than what the
images in either interval indicated. Although highly speculative
at this point, it could be potentially fruitful if future studies of
time-order effects would take considerations of natural statistics
into account.

6 We thank an anonymous reviewer for this example.
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