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Abstract 
People have generally been considered poor at probabilistic 
reasoning, producing subjective probability estimates that far 
from accord to normative rules. Features of the typical 
probabilistic reasoning task, however, make strong 
conclusions difficult. The present study, therefore, combines 
research on probabilistic reasoning with research on category 
learning where participants learn base rates and likelihoods in 
a category-learning task. Later they produce estimates of 
posterior probability based on the learnt probabilities. The 
results show that our participants can produce subjective 
probability estimates that are well calibrated against the 
normative Bayesian probability and are sensitive to base 
rates. Further, they have accurate knowledge of both base rate 
and means of the categories encountered during learning. This 
indicates that under some conditions people might be better at 
probabilistic reasoning than what could be expected from 
previous research. 
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Introduction 
Research concerned with human probability judgment has 
been dominated by the general conclusion that people are 
poor at reasoning with probabilities because they substitute 
hard facts about probabilities with subjective variables that 
are conveniently available (see e.g., Gilovich, Griffin, & 
Kahneman, 2002). In fact, with respect to tasks requiring 
people to integrate probabilities according to Bayes’ 
theorem the verdict is even harder, as summarized by a 
quote from Kahneman and Tversky (1972, p. 450): “In his 
evaluation of evidence, man is apparently not a conservative 
Bayesian: he is not a Bayesian at all.” In the present study, 
we present results indicating that, at least under some 
conditions, the claim by Kahneman and Tversky might have 
been somewhat premature. 

To appreciate the kind of task our participants are faced 
with, imagine going to catch fish in a lake where the fishing 
authorities have farmed two kinds of bass: copper bass, and 
silver bass. The two kinds of bass look identical and the 
only feature that distinguishes them is that the copper bass 
weighs, on average, a little less than the silver bass. While 
looking identical they, however, taste very differently. If 
you want a delicious dinner, you should go for the silver 
bass while if you want to feel sick you should choose a 

copper bass. To make sure that the lake is not over fished 
the authorities have also decided that, at all time, the ratio of 
copper to silver bass should be 8:2, a piece of information 
not made publically available. 

The fish scenario illustrates a type of situation that people 
engage in frequently in their everyday lives. The fishermen 
estimate the probability of a new object belonging to a 
category based on previous experience. That is, each time a 
fish is taken out of the lake the fisherman needs to estimate 
the probability of a given fish being a copper or a silver 
bass. The estimate is informed by experience with fish 
previously taken up out of the lake and cooked for dinner, 
thus effectively categorized as copper or silver bass. More 
specifically, this illustrates a situation where an observer 
needs to learn base rates and likelihoods from experience 
and later integrate this information to reach an estimate of a 
posterior probability. In such, the fish scenario incorporates 
two areas of cognitive psychology: probabilistic reasoning 
and category learning, that have been extensively 
investigated separately, but seldom together (but see, 
Nilsson, Olsson, & Juslin, 2005). 

Probabilistic Reasoning 
Research on human probabilistic reasoning has mainly been 
concerned with the evaluation of subjective probability 
estimates against normative rules of probability. In the 
typical experiment, the subjective estimates are informed by 
a set of probabilities explicitly stated in the task. Consider, 
for example, the cab problem (Tversky & Kahneman, 1980) 
where participants are asked to estimate the probability of a 
cab involved in an accident being blue rather than green 
based on the base rates of blue (.15) and green (.85) cabs 
and the hit-rate (.8) of an eyewitness with both the base rate 
and hit-rate being explicitly stated in the task. The 
normative answer (.41) can be found by integrating the 
information in the problem using Bayes’ theorem.  

When presented with the cab problem, and similar 
problems, people tend to give probability estimates that are 
much higher than what is implied by Bayes’ theorem. Often 
the modal response is closer to the hit-rate of the eyewitness 
(.8). This pattern of results is commonly interpreted as a 
captivation in participants by the hit-rate along with neglect 
of the base rate (.15). The dominating explanation to this 
apparent neglect of base rates has been that people are prone 



to use judgmental heuristics (e.g. the representativeness 
heuristic) that ignore base rates (e.g., Kahneman & Tversky, 
1972; but see, Koehler, 1996). More recent accounts of 
probabilistic reasoning, suggesting that people are prone to 
linear additive information integration, argue instead that 
the non-normative answers are the result of how 
probabilities are integrated rather than the use of heuristics 
per se (Juslin, Nilsson, & Winman, 2009; Juslin, Nilsson, 
Winman, & Lindskog, 2011). 

Regardless of the underlying mechanisms explaining the 
results, the use of complex normative rules, such as Bayes’ 
theorem, to integrate probabilities seems to be beyond the 
ability of most people (e.g., Eddy, 1982; Gigerenzer & 
Hoffrage, 1995). In fact, even explicit instructions regarding 
how to use Bayes’ theorem to integrate the information is 
insufficient to improve people’s judgments (Juslin et al., 
2011). It should be noted, however, that the despite the 
somewhat discouraging picture painted by previous 
research, recent accounts of human cognition (e.g., 
Oaksford & Chater, 2009; Tenenbaum, Kemp, Griffiths, & 
Goodman, 2011)  have indicated that people are rational 
Bayesian agents with a remarkable ability to integrate 
information in accordance with the laws of Bayesian 
probability theory.  

The extent to which people’s probability estimates in 
Bayesian reasoning tasks coincide with the normative 
answer has largely been tested using tasks similar to the cab 
problem. Three features of these types of tasks are 
noteworthy, features that might influence the conclusions 
that can be drawn about human probabilistic reasoning. 
First, the information to be integrated (base rates, 
likelihoods, etc.) is explicitly given to participants in the 
form of probabilities (e.g., Kahneman & Tversky, 1972) or, 
sometimes, frequencies (e.g., Gigerenzer & Hoffrage, 
1995). Second, the tasks are commonly set up to give a 
posterior probability that is low, often .40 or smaller. 
Finally, the outcome for which the posterior probability is 
estimated is often binary (blue or green cab, disease or no 
disease, engineer or lawyer, etc.). All of these task features 
make it difficult to draw strong conclusions about the ability 
of people to integrate probabilistic information. In everyday 
life, people are unlikely to come across situations where 
probabilities are explicitly stated. They rather encounter 
situations, like the fishing example above, where 
probabilities are learned from experience. Many real life 
situations also include an outcome, for which the posterior 
probability is estimated, that is continuous rather than 
binary. Furthermore, the restriction of the range of posterior 
probabilities makes conclusions about the extent to which 
people are calibrated against the Bayesian probability 
difficult due to regression effects. In order to address these 
three issues it is necessary to find a task where participants 
learn probabilities from experience and where it is possible 
to elicit probability estimates on the entire 0 to 1 range for a 

continuous outcome variable. One promising candidate is 
found in category learning. 

Probabilistic Reasoning and Category learning 
In the typical categorization task participants are presented 
with a number of stimuli from two or more categories and 
are asked to assign an appropriate category to each based on 
a set of features. During learning, the categorization is often 
followed by feedback regarding the correct category. 

The literature contains several different models of how 
categorization is made, including prototype, exemplar, and 
decision-bound models (Ashby & Maddox, 2005). The 
purpose of this study is not to distinguish between the 
different kinds of models. Rather, we draw upon the notion 
that most models of human categorization make 
assumptions about: a) how and what information is accessed 
from the categories and what computations are performed 
on this information and, b) how a response is selected after 
computations are made (Ashby & Alfonso-Reese, 1995). 
For most models that assume a probabilistic, in contrast to a 
deterministic, response selection process, the decision rule 
subjects are assumed to use could be described as; respond 
category A to stimulus x with probability M(x) where: 

 
 

  
 
 
In this expression βi is the response bias towards category 

i and Sxi is a measure of the similarity between stimulus x 
and category j. At least under some conditions Eq. 1 can be 
reduced to  

 
where )(ˆ iP and if̂  are estimators of the base rate and 

probability density function of category i respectively 
(Anderson, 1991; Ashby & Alfonso-Reese, 1995). Ashby 
and Alfonso-Reese (1995) argued that these properties of 
the categorization task transform it into a density estimation 
task where participants are faced with estimating base rates 
and probability density functions of each category. Indeed, 
several investigations of models of categorization have 
shown that they are mathematically equivalent to density 
estimation (e.g., Anderson, 1991; Ashby & Alfonso-Reese, 
1995; Griffiths, Sanborn, Canini, & Navarro, 2008) 

The similarities between Bayes’ theorem and Eq. 2 
suggest that categorization tasks are similar to probabilistic 
reasoning tasks with the difference that while probabilities 
are explicitly stated in the reasoning task they need to be 
learned from trial-by-trial feedback in the categorization 
task. Further, while the literature on probabilistic reasoning 
is somewhat pessimistic about people’s ability to integrate 
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probabilities the categorization literature suggests that 
people are quite apt at categorization (Ashby & Maddox, 
2005). However, while research on categorization has been 
extensively concerned with how categories are represented 
and the processes leading up to a categorization (Ashby & 
Maddox, 2005) it has put much less focus on the extent to 
which base rates and likelihoods are learned. Further, the 
typical categorization task requires participants to assign a 
stimulus to a category leaving the question of whether M(x) 
in Eq. 2 is close to the normative posterior probability 
unanswered. 

It should be noted that categorization research indicates 
that people are able to learn base rate information from 
experience (Medin & Edelson, 1988), at least under some 
conditions, and that models of categorization can be seen as 
the cognitive substrate of subjective probability estimates 
(Nilsson et al., 2005). 

The Present Study 
The present study investigates the accuracy of subjective 

probability estimates in a Bayesian probability reasoning 
task. Instead of being presented with base rates and 
likelihoods explicitly, however, participants learn them 
through experience in a categorization task. 

Further, we elicit probabilities from the entire range of 
possible posterior probabilities for a continuous outcome 
variable in order to have a task that is as ecologically valid 
as possible.  

To investigate factors that might influence the learning of 
base rates and likelihoods as well as the process used to 
elicit probability estimates, we manipulate both base rate 
and the distance between categories (i.e., the likelihood 
ratio).  

Method 

Participants 
Participants were 40 (24 female and 16 male) undergraduate 
students from Uppsala University with a mean age of 25.1 
years (SD = 4.3 years). They received a movie ticket or 
course credits for their participation. 

Design 
The experiment used a 2x2 between-subjects design with 
base-rate-ratios (8:2/6:4) and category-distance (short / far) 
as independent variables. 

Materials and Procedure 
The computerized task was carried out on a PC and 
consisted of a learning phase and a test phase. On each of 
the 200 trials in the learning phase, participants categorized 
an exemplar to one of two categories (A and B) along a 
single dimension. The number of exemplars from each 
category was determined by the base-rate-ratio. In the 8:2-
condition the ratio of the number of exemplars in the two 

categories was 8:2 (i.e., 160 A-exemplars and 40 B-
exemplars) and in the other condition it was 6:4. The 200 
items were presented in an individually randomized order. 

A unique training set was created for each participant by 
randomly sampling stimuli from two Gaussian distributions 
with equal standard deviation (σ = 6). In the short category-
distance condition, the mean of the two Gaussians were 40 
and 49 respectively while in the far condition they were 40 
and 52. Whether category A or B had the highest mean was 
counterbalanced over participants.  

The experiment used two cover stories. Either the 
categories where two types of projectors (Braun / Kodak) 
categorized on their brightness (lumens) or two types of 
disease (Buragamo / Terrigitis) categorized on the fictitious 
PKS-value. Participants were told that the values they 
would experiences were created specifically for this study 
and that they could not use any prior knowledge to solve the 
categorization task. The two cover stories, and which 
category was A or B, was counterbalanced over participants. 

On each of the 52 trials in the test phase participants were 
presented with a value (lumens or PKS) not seen in training 
and were asked to state the probability (in percent) that the 
item belonged to category A (i.e., the category with the 
highest base rate). To create the 52 items for the test phase 
the range of the training set was divided into eleven 
intervals based on the posterior probability pAx that a test 
item x belonged to category A (pAx = 0,  0 < pAx < .1,  .1 ≤  
pAx < .2, …, .9 ≤  pAx < 1.0, pAx = 1.0). For each of the nine 
middle intervals (0 < pAx < .1, …  9 ≤  pAx < 1.0) four items 
were randomly drawn uniformly from that interval. Six 
items each were randomly drawn from the two extreme 
intervals, where the posterior probability is 0 and 1. Finally, 
four critical items with an equal distance to the category 
means were included in the test set. After completing the 
test phase participants gave explicit estimates of the base 
rates and means of the two categories. 

Results 

Learning Performance 
To investigate learning performance, the learning phase was 
divided into 10 blocks of 20 trials each. For each block, we 
calculated the proportion of correct categorizations. Figure 1 
illustrates that participants quickly learn to categorize the 
training stimuli to the appropriate category with proportion 
correct reaching .8 at the end of the training phase. 

We investigated the extent to which the base-rate-ratio 
and category-distance manipulations influenced the rate of 
learning by entering proportion correct as dependent 
variable into a 2x2x10 split plot ANOVA with base-rate-
ratio (8:2 / 6:4) and category-distance (short / far) as 
between-subjects independent variable and training block as 
within-subjects independent variable. The analysis revealed 
a significant main effect of training block (F(9, 324) = 4.95, 
MSE = 0.012, p < .001) with a significant difference 
between the first and last block. Further, there was a 
significant main effect of category-distance (F(1, 36) = 



5.09, MSE = 0.068, p = .03) where participants in the far 
condition performed better (M  = .78, SEM = .018) than 
participants in the short condition (M = .72, SEM = .018). 
Notably this difference was significant also in the last 
training block (t(38) = 2.6, p = .01). 
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Figure 1: Proportion correct as a function of training block. 
Vertical bars denote 95 % - confidence intervals. 
 

Neither the main effect of base-rate-ratio (F(1, 36) = 2.83, 
MSE = 0.068, p = .10) nor any of the interactions (all p:s > 
.13) reached significance. Notice that while the main effect 
of category-condition indicates that it was easier for 
participants to learn the categories with means far apart as 
opposed to close together, the lack of interactions suggest an 
equal learning rate in all conditions. 

Subjective Probability Estimates 
In the test phase participant gave explicit estimates of the 

posterior probability that an item x belongs to category A 
(i.e., the category with the highest base rate). Figure 2 
shows the mean estimated probability plotted against the 
normative Bayesian probability. In the figure, estimates are 
grouped into the eleven intervals described above.  

As is evident from the figure participants are on average 
fairly well calibrated in their subjective probability 
estimates. To investigate the effect of base-rate-ratio and 
category-distance on the subjective estimates of posterior 
probability we calculated the mean absolute difference 
between the estimated and normative probability. The 
difference was entered as dependent variable into a 2x2 
factorial ANOVA with base-rate-ratio (8:2 / 6:4) and 
category-distance (short / far) as between-subjects 
independent variables. There were no significant effects (all 
p:s > .18). Thus, probability estimates were on average not 
influenced by base-rate-ratio or category-distance. 

To investigate a possible bias in the probability estimates 
the signed difference (rather than absolute difference) was 
entered into the corresponding ANOVA. Once again there 
were no significant effects (all p:s > .26) and a single 

sample t-test on the signed difference revealed that it did not 
differ significantly from 0 (t(39) = .96, p = .35). 
 

 
Figure 2: Subjective probability plotted against the 
normative Bayesian probability. Dotted line indicates 
perfect calibration. 
 

The results illustrated in Figure 2 indicate that the 
accuracy of subjective probability estimates might vary as a 
function of the Bayesian posterior probability. To 
investigate this probability we conducted a more fine 
grained analysis where Bayesian probability interval was 
added as a within-subjects factor in the analysis of absolute 
error. This 2x2x11 split-plot ANOVA revealed two 
significant effects. First, the main effect of Bayesian 
probability interval was significant (F(10, 360) = 3.07, MSE 
= 0.018, p < .001). The effect is due to absolute errors for 
the larger probability intervals being smaller than those for 
the lower intervals. Second, the significant probability 
interval by base-rate-ratio (F(10, 360) = 2.79, MSE = 0.018, 
p < .001) is illustrated in Figure 3 by means of a calibration 
curve. As can be seen in the figure, the interaction is due to 
estimates in the low probability intervals being slightly 
better for participants in the 6:4-condition than for 
participants in the 8:4-condition while it is the opposite in 
the high probability intervals. 

The analysis above suggests that the base-rate-ratio 
manipulation might influence the extent to which 
participants use base rates to inform their subjective 
probability estimates. To investigate this possibility we 
analyzed participants’ probability estimates of the critical 
items included in the test set. Remember that the critical 
items are positioned with the same distance to both category 
means. If participants disregard the base rate information 
and instead use the ratio of the distance from a test item to 
each of the two means as a proxy for the posterior 
probability, or some similar strategy, they should estimate 
the posterior probability of all critical items to be .5. 
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Figure 3: Subjective probability plotted against the 
normative Bayesian probability for the two base-rate-ratio 
conditions separately. Dotted line indicates perfect 
calibration. 

 
Figure 4 displays the distribution of responses to the 

critical items. As is evident from the figure a majority of 
responses are larger than .5, indicating that participants take 
the base rate of the two categories into account when giving 
subjective probability estimates. To further investigate the 
use of base rates the subjective probability estimates of 
critical items were entered as dependent variable into a 2x2 
factorial ANOVA with base-rate-ratio and category distance 
as between-subjects factors. One participant, considered an 
outlier (|z| > 2.5), was excluded from the analysis. The 
ANOVA revealed a significant main effect of base-rate-ratio 
(F(1, 35) = 4.63, MSE = 0.037, p = .038) with higher 
probability estimates in the 8:2-condition (M = .76, SD  = 
.14) then in the 6:4-condition (M = .62, SD  = .24). None of 
the other effects reached significance (both p:s > .20). More 
importantly in all conditions, participants gave estimates 
larger than .5, even though not significantly larger in the 
short-6:4-condition, indicating sensitivity to base rates. 
 

 

 
 
Figure 4: Distribution of subjective probability estimates of 
critical items in the test phase. 

 
A further indication of sensitivity to base rates is given by 

the explicit estimates of base rates illustrated in Figure 5. 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
Figure 5: Means of explicit estimates of base rate for the 
four different true base rates separately. Vertical bars denote 
95 % - confidence intervals. 
 

As can be seen in the figure the explicit estimates are 
sensitive to the experienced base rates. In addition there is 
little difference in the accuracy of estimates in the different 
conditions indicating that the differences in use of base rates 
seen above is not an effect of differences in learning. 

Discussion 
Research on probabilistic reasoning has long been 
dominated by the general conclusion that people are very 
poor at integrating information according to the laws of 
probability (e.g., Bayes’ theorem). At the same time 
research concerned with category learning, indicates that 
people are quite apt at solving categorization tasks that, at 
least mathematically, are similar to probabilistic reasoning 
tasks. In the present study, we therefore combined these two 
research traditions by eliciting subjective posterior 
probabilities from base rates and likelihoods learned in a 
categorization tasks. 

Performance in the learning phase indicated that our 
participants quickly learned to categorize the stimuli 
correctly. Performance was somewhat better when category 
means were far apart as opposed to close together. This was 
expected because the closer the two category means get the 
more two their probability density functions overlap, which 
in turn makes it more difficult to distinguish the two 
categories. 

The subjective probability estimates given by participants 
in the test phase were, as is illustrated in Figure 2, well 
calibrated against the normative Bayesian probability. There 
was no systematic bias in the estimates and the pattern of 
results seen in Figure 2 suggests that the deviations from the 
normative Bayesian probability could be attributed to 
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regression effects. Notably, even though there was a 
difference in learning between the two category-distance 
conditions, this did not affect the correspondence of the 
subjective estimates.  

The explicit estimates of base rates and category means 
indicated that participants learned these category properties. 
Arguably, however, they might not have used them to reach 
a subjective probability estimate. However, the analysis of 
the critical items included in the test phase showed that 
participants in all conditions were sensitive to the base rate 
and, at least to some extent, integrated this knowledge in 
their probability estimates. 

Similar to previous research demonstrating that people 
can be good at reasoning under some conditions (e.g., 
Baron, 2000), the results of the present study show that 
when people are allowed to learn base rates and likelihoods 
in a category learning task they are at least under some 
conditions able to produce subjective probability estimates 
that are well calibrated and sensitive to base rates. This 
suggests that the conclusion by Kahneman and Tversky 
(1972, p. 450) may have been somewhat premature. An 
interesting question for future research is to investigate the 
processes leading up to what is apparently a normative 
answer. 
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