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The capacity of short-term memory is a key constraint when people make online judgments requiring
them to rely on samples retrieved from memory (e.g., Dougherty & Hunter, 2003). In this article, the
authors compare 2 accounts of how people use knowledge of statistical distributions to make point
estimates: either by retrieving precomputed large-sample representations or by retrieving small samples
of similar observations post hoc at the time of judgment, as constrained by short-term memory capacity
(the naı̈ve sampling model: Juslin, Winman, & Hansson, 2007). Results from four experiments support
the predictions by the naı̈ve sampling model, including that participants sometimes guess values that
they, when probed, demonstrably know have the lowest probability of occurring. Experiment 1 also
demonstrated the operations of an unpredicted recognition-based inference. Computational modeling also
incorporating this process demonstrated that the data from all 4 experiments were better predicted by
assuming a post hoc sampling process constrained by short-term memory capacity than by assuming
abstraction of large-sample representations of the distribution.
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At least since the works of Brunswik (1955), the human mind has
been likened to an intuitive statistician (Gigerenzer & Murray, 1987;
Peterson & Beach, 1967). It is often assumed that the adaptive
problems that people meet in their environment are similar to those
addressed in statistics and probability theory and, therefore, that the
mind is likely to have adopted similar solutions to its adaptive prob-
lems (for more recent Bayesian incarnations of the intuitive statisti-
cian, see, e.g., Anderson, 1990; Griffiths & Tenenbaum, 2006; Oaks-
ford & Chater, 2009).

Research on judgment and decision making has often—in very
general terms—been motivated by the notion of bounded rational-
ity, namely, the insight that people have limited time, knowledge,
and computational ability (Simon, 1990). It is more rare that the
implications of the specific nature of these constraints are carefully
analyzed, such that people often, quite literally, have to rely on
very small samples (but see Dougherty & Hunter, 2003;
Gaissmaier, Schooler, & Rieskamp, 2006; Hansson, Rönnlund,
Juslin, & Nilsson, 2008; Juslin, Winman, & Hansson, 2007; Kar-
eev, Amon, & Horwitz-Zeliger, 2002; Stewart, Chater, & Brown,
2006) or, because of capacity constraints, have to rely on linear
additive integration (Juslin, Nilsson, & Winman, 2009; Juslin,
Nilsson, Winman, & Lindskog, 2011; Nilsson, Winman, Juslin, &
Hansson, 2010).

In this article, we extend the previous research on man as an
intuitive statistician by exploring how short-term memory con-

straints affect how people are able to use their knowledge of
statistical distributions to make point estimates. More precisely, on
the basis of four experiments and computational modeling, we
evaluate if the accuracy of point estimates is constrained by the
overall sample size stored in long-term memory (LTM) or by
short-term memory (STM) constraints.

Point Estimates and Knowledge of Distributions

How do people make point estimates? Brown and Siegler (1993)
emphasized the importance of knowledge of both the metric prop-
erties of the quantity, like its mean, variance, and distribution, and
the mapping properties of the quantity, which involve knowledge
about the ordinal relations based on domain-specific knowledge
and heuristics (see also von Helversen & Rieskamp, 2008). Al-
though mapping knowledge has been emphasized in research on
heuristics (e.g., Gilovich, Griffin, & Kahneman, 2002), multiple-
cue judgment (Juslin, Karlsson, & Olsson, 2008; von Helversen &
Rieskamp, 2008), and function learning (DeLosh, Busemeyer, &
McDaniel, 1997; Kalish, Lewandowsky, & Kruschke, 2004), the
effects of metric knowledge on point estimates have been largely
ignored (but see Pitz, Leung, Hamilos, & Terpening, 1976).

In the literature on forecasting (e.g., Goodwin, 1996) and in
economic theory (e.g., Engelberg, Manski, & Williams, 2009),
people are often assumed to use the central tendency of a subjec-
tive probability distribution as their point prediction, where this
distribution manifests both their metric and their mapping knowl-
edge. Intriguingly, however, there appears to be no single norma-
tive principle that can guide point estimates (Lehmann & Casella,
1998), and it is unclear from previous research how metric knowl-
edge influences point estimates.

When people estimate unbiased descriptive statistics, like the
arithmetic mean, the estimates generally coincide decently with the
predictions from statistical theory (Peterson & Beach, 1967; Spen-
cer, 1961, 1963), with estimates being uninfluenced by distribution
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shape (skewed, normal, or bimodal) and variance (Malmi & Sam-
son, 1983). People are responsive to variance (Evans & Pollard,
1985) but have problems making accurate estimates (Beach &
Scopp, 1968; Kareev et al., 2002; Pollard, 1984; Slovic, Fishchoff,
& Lichtenstein, 1977).

Research on knowledge of other statistical properties has mainly
addressed whether people can estimate the shape of distributions
they have encountered in their everyday lives (Fox & Thornton,
1993; Griffiths & Tenenbaum, 2006; Linville, Salovey, & Fischer,
1989; Nisbett & Kunda, 1985), such as the frequency of death
causes (Hertwig, Pachur, & Kurzenhauser, 2005; Lichtenstein,
Slovic, Fischhoff, Layman, & Combs, 1978), the grade point
average of fellow students (Nisbett & Kunda, 1985), or the baking
time of pastries (Griffiths & Tenenbaum, 2006). The results are
mixed. In some cases, people’s knowledge of the distributions
appears biased by the external information in the environment
(e.g., media exposure and death causes; Lichtenstein et al., 1978);
in other cases, it is remarkably accurate (e.g., Griffiths & Tenen-
baum, 2006; however, see Mozer, Pashler, & Homaei, 2008).
People often put more weight on observations close to where they
find themselves in the distribution (Fiedler, 2000; Nisbett &
Kunda, 1985).

Several accounts of human judgment and decision making as-
sume that people sample information from memory prior to mak-
ing a judgment or decision (e.g., Busemeyer & Townsend, 1993;
Fiedler, 2000; Kahneman & Miller, 1986; Stewart et al., 2006;
Tversky & Koehler, 1994). In decision by sampling theory (Stew-
art et al., 2006), for example, the value of a target is determined by
its relative rank in a small sample retrieved from memory, which
explains, among other things, asymmetries in subjective value of
gains and losses. Thus, it seems that people are prone to base
judgments on small samples from memory (see also Dougherty &
Hunter, 2003; Gaissmaier et al., 2006; Hansson et al., 2008;
Kareev et al., 2002). Here we extend this research by exploring
how point estimates are influenced by the reliance on small sam-
ples.

Two Models of Naı̈ve Point Estimation

People often have to draw on their knowledge to make point
estimates of unknown quantities. Assume, for example, that you
have previously made 1,000 observations of yearly revenues of
companies operating in a market and the distribution of these
numbers is illustrated in Figure 1A (i.e., a unimodal distribution).
Now a new and unknown company is randomly sampled from this
market and your task is to predict or make a best guess about the
revenue of the new company. What would be your best guess?

People can use knowledge of distributions to make point esti-
mates in at least two different ways: by retrieving precomputed
large-sample representations of distribution properties or by re-
trieving samples of observation post hoc at the time of judgment
and use the sample properties to estimate the population properties.
The first stages are similar with both processes: In the environ-
ment, there exist variables, natural or artificial, described by ob-
jective environmental distributions (OEDs). A biased or a repre-
sentative subset of the observations in the OED is experienced by
a person and becomes encoded in LTM in the form of a subjective
environmental distribution (SED; Juslin et al., 2007). For example,
a person may have stored in LTM the revenues of some companies

operating on a market (the SED), which is a subset of all the
companies operating on this market (the OED).

Constrained by LTM: Capitalizing on Experience

One possibility is that the point estimates derive from retrieval
of large-sample representations. Precomputed large-sample-based
representation may either derive from explicit attempts to abstract
statistical properties during exposure to the distribution, as when a
person keeps and updates a running mean of a variable as new
observations are made, or, hypothetically, arise from correspond-
ing preconscious and automatic computations (Zacks & Hasher,
2002). The hallmark of large-sample representations is that if a
person benefits from an increasing number of observations in the
SED with more experience, one expects the knowledge to become
more consistent and accurate with more experience. For example,
given random sampling from an OED with standard deviation �,
the law of large numbers implies a standard error of the mean
computed from N observations in the SED of approximately �/�N,
which converges to zero as N increases. If people use large-sample
estimates of the population mean for point estimation, with in-
creasing experience, the point estimates should converge on the
population mean.

Constrained by Short-Term Memory: The Naı̈ve
Sampling Model (NSM)

A second possibility is that observations are stored in LTM but,
prior to the judgment, no abstraction of distribution properties
occurs. Although, in principle, it could be possible that a person
retrieves the entire SED at the time of judgment, we follow
research suggesting that such online judgments are constrained by
short-term memory capacity (e.g., Dougherty & Hunter, 2003;
Gaissmaier et al., 2006; Hansson et al., 2008; Kareev et al., 2002;
Stewart et al., 2006). At the time of judgment, a sample of n
observations is retrieved, temporarily becoming active in short-
term memory, and a property of this sample is used as a direct
proxy for the population property (Juslin et al., 2007). The sample
of n active observations in short-term memory, typically estimated
to approximate 4 � 2 observations (Cowan, 2001), is referred to as
the subjective sample distribution (SSD). A person may, for ex-
ample, not know the average salary of people working at his or her
work place but may retrieve a number of known salaries and
estimate the average salary, or “point estimate” the salary of a
specific individual.

The qualification naı̈ve in the NSM refers to the presumption of
people that a sample property can be taken directly to describe
population properties. For unbiased statistical properties, direct use of
sample properties produces reasonable judgments, but direct (uncor-
rected) use of inherently biased properties of small short-term mem-
ory constrained (STMC) samples leads to bias. Sample proportion is
an unbiased estimator, on average reproducing the population propor-
tion, and direct use of sample proportion is likely to yield accurate
assessments. By contrast, sample variability is inherently biased,
which is why it needs to be corrected by n/(n � 1) to be an unbiased
estimate of the population variance. Uncorrected use of sample vari-
ance thus leads to bias. The implication is that the judgment is
constrained and sometimes systematically biased by being generated
from a small sample. For example, given random sampling from an

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.
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Figure 1. Average distribution shape at sample size n for a unimodal distribution (n � 1,000 in A, n � 4 in
B), a uniform distribution (n � 1,000 in C, n � 4 in D), and a bimodal distribution (n � 1,000 in E, n � 4 in
F). The x-axis is the observation minus the mean in the sample (e.g., 0 is an observation that coincides with the
sample mean). The distributions were obtained by sampling repeatedly from beta distributions with parameters
� � � � 3 (unimodal distribution, A and B), � � � � 1 (uniform distribution, C and D), and � � � � .3
(bimodal distribution, E and F). No of obs � number of observations.
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OED with standard deviation �, the standard error of the estimated
mean in the OED based on n observations in the SSD approximates
�/�n, regardless of experience (N in the SED). The counterintuitive
prediction in this regard is that the point estimates should not con-
verge on the population mean with more experience but show the
same variability for people with little experience (small SED) and
people with extensive experience (large SED).

An Illusion of Unimodality With the NSM

Figure 1 illustrates an intriguing property of small samples: Not
only are they often insufficient as a basis for inferring the distri-
bution shape, but, if anything, they are misleading about the
distribution shape. One way to represent the impression of distri-
bution shape that is conveyed in a sample is in terms of the
deviations from the sample mean. A sample that mainly contains
observations close to the sample mean and few observations far
from the sample mean will naturally yield an impression of uni-
modal distribution shape (see Figure 1A). By contrast, a sample in
which few observations are close to the sample mean but many
observations have large deviations from the sample mean will
signal a bimodal shape (see Figure 1E).

Figure 1 presents deviations from the sample mean at sample
size n for a unimodal distribution (n � 1,000 in Figure 1A, n � 4
in Figure 1B), a uniform distribution (n � 1,000 in Figure 1C, n �
4 in Figure 1D), and a bimodal distribution (n � 1,000 in Figure
1E, n � 4 in Figure 1F). The score on the x-axis in these figures
is the observation minus the mean in the sample (e.g., a score of 0
is an observation that coincides with the mean in the sample). With
a unimodal distribution, the large sample in Figure 1A accurately
portrays the underlying unimodal population distribution (a beta
distribution with � � � � 3). A sample size of 4 inherently makes
drawing inferences about distribution shape difficult, but at least,
on average, it will correctly suggest that most observations are
close to the mean (see Figure 1B) and, on average, correctly
convey the unimodal distribution shape.

However, although the large sample in Figure 1C from a uni-
form distribution (beta distribution with � � � � 1) accurately
conveys the distribution shape, the small samples in Figure 1D
will, if anything, suggest a unimodal distribution, where most
observations fall close to the sample mean. Moreover, although a
large sample in Figure 1E accurately portrays the distinctly bi-
modal population distribution (beta distribution with � � � � .3),
the small sample in Figure 1F also suggests a unimodal distribu-
tion.1 In short, perceiving the world through small samples not
only makes it difficult to detect the underlying distribution shape,
it will, if anything, convey an illusion of unimodality.2 This
illusion is, of course, confined to small samples (n � [3, 8]), but
it is quite pervasive in the regions of sample size that are made
relevant by the constraints on short-term memory capacity. Intui-
tively, in small samples, it is unlikely that both modes of a bimodal
distribution are represented and the sample mean will chase the
sampling error in the few observations in the sample. That people
enter category learning tasks with what appears to be an implicit
expectation of a normal distribution (Fried & Holyoak, 1984;
Flannagan, Fried, & Holyoak, 1986) and exhibit a bias to assume
normality when generating social distributions (Nisbett & Kunda,
1985) may be related to small samples looking unimodally dis-
tributed.

Summary of Predictions

We follow previous research suggesting that people can shift
between strategies for making point estimates (Lawrence &
O’Connor, 2005; Peterson & Miller, 1964; Weber, 1994; Winkler,
1970). This research shows that people have some ability to shift
between different strategies for making point estimates as a func-
tion of strong and clear incentives and a sufficient amount of
training. In the experiments reported in this article, however, our
main interest lies not in the ultimate malleability of the strategies
but in disclosing the strategies that people spontaneously engage in
when making online point estimates in the absence of specific
incentive structures during learning. We hypothesize that when a
distribution is perceived to be unimodal, people are naturally
inclined to make a point estimate close to the mean of the distri-
bution, as suggested by the ambitions both to avoid large devia-
tions (as formalized by least-squares minimization) and to maxi-
mize the chance of being correct. When a distribution is perceived
to be bimodal, we propose that there is a conflict between the
ambitions to avoid large deviations, suggesting a mean response,
and to maximize the chance of being correct, suggesting an ex-
treme value.

If people can accrue abstract large-sample representations, their
knowledge of the distributions and their properties should improve

1 Another way to represent the distribution shape is in terms of the
interquartile distance (I) between the values of the 75th and the 25th
percentiles, covering 50% of the distribution, relative to the distance R
between minimum and maximum value (for finite dimensions). Define the
following score, U � .5 � R � I. In a uniform distribution, U � 0
(e.g., approximately true of the distribution in Figure 1C); in a unimodal
distribution, U � 0 (e.g., in Figure 1A, U � .17); in a bimodal distribution,
U � 0 (e.g., in Figure 1A, U � �.18). Defining the corresponding scores
for samples of size 4 is inherently difficult, because the limits defining the
corresponding intervals are less well defined (e.g., if A, B, C, and D are the
values in the samples ordered in terms of their magnitude, any combination
of cutoffs between A and B and between C and D will cover the central
50% of the distribution). However, even if we define the interval I as
conservatively as possible, simply as the difference (C � D) between C and
D, the strongly negative U of �.18 for the large sample bimodal distribu-
tion in Figure 1E turns into a slightly positive (unimodal) score of .03,
when U is computed from samples of size 4 (see Figure 1F). This illustrates
the same relative shift as in Figure 1 from the strong bimodality that is
visible in a large sample (or the population) to the relatively much more
frequent impression of unimodality conveyed in small samples.

2 Although the phenomenon is limited to small samples, when we
consider sampling error alone, it is worth remembering that similar effects
will arise also from other sources of random error. In general, whenever a
random error e is added to a score x to produce an observed score y (i.e.,
y � x 	 e) and regardless of the original distribution of the score x, the
distribution of y very soon converges to a unimodal distribution. In Fig-
ure 1, the score is the deviation from the mean, and the error in this score
arises from the uncertain estimation of the population mean, which is
larger, the smaller the sample. Small samples thus convey the impression
that most observations are close to the (sample) mean, as typical of
unimodal distributions. Notably, the results in Figure 1 only address
sampling error. To the extent that additional sources of random (neural)
error arise in the processes of encoding, storage, or retrieval from LTM
(e.g., Erev, Wallsten, & Budescu, 1994; Juslin, Olsson, & Björkman,
1997), this distortion toward a small-sample impression of a unimodal
distribution will be further strengthened.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.
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with experience. If people benefit from large-sample representa-
tions, with a unimodal distribution, we thus expect point estimates
to converge on the population mean with training. With a bimodal
distribution, we expect people to either (a) make point estimates
that similarly converge on the population mean, if they are driven
by the ambition to avoid large errors, or (b) increasingly make
extreme responses as they learn more about the bimodal distribu-
tion shape, if they are driven by the ambition to maximize the
probability of being right. The NSM suggests that the small sam-
ples that people have at their disposal are too small to reliably
detect a bimodal distribution shape. Thus, after extensive experi-
ence and even if the payoff schedule explicitly encourages maxi-
mizing behavior (as in Experiments 3 and 4 below), there should
be a tendency to rely on a mean strategy.

Note an intriguing prediction by the NSM. When people are
probed for the proportions of the distribution that fall in predefined
intervals, there should be a potential for accurate production of the
distribution shape, because sample proportion is an unbiased esti-
mator. Thus, despite making mean estimates for bimodal distribu-
tions, if people use sample proportion to assess the population
proportion of the distribution falling in intervals, they should—if
probed in this way—disclose accurate knowledge of the bimodal
distribution shape and, accordingly, at the same time articulate the
belief that an estimate is very unlikely to fall close to the mean.

Present Study

In Experiment 1, we tested the prediction that people are in-
clined to make point estimates according to a mean strategy, even
with a distinctly bimodal distribution, while at the same time they
disclose the ability to correctly reproduce the bimodal distribution
shape when probed for the distribution with a proportion format.
Experiment 2 verified that this tendency to make point estimates in
the midinterval was truly a response to the distribution experi-
enced. In Experiment 3, we tested if this effect persists with a loss
function that explicitly and strongly rewards guesses that are close
to the correct value and investigated if the effect can be manipu-
lated by changing the format into one that invites the learning of
proportions. In Experiment 4, we used the same loss function and
investigated how judgments are affected by amount of training.

Because Experiment 1 documented the unpredicted operation of
an additional mechanism for making the point estimates, we wait
to introduce a more formal treatment of the models until after
Experiment 1. After reporting Experiment 1, we introduce models
of the processes that incorporate this unpredicted influence, allow-
ing us to compare the assumptions that sample size is constrained
by long-term or short-term memory.

Experiment 1: Guessing on the Unlikely

In a learning phase, participants observed the revenues of 60
fictional companies in a market with either a unimodal or a
bimodal revenue distribution. Subsequently, they made point esti-
mates of revenues both of companies seen in the learning phase
and of companies not previously experienced but randomly drawn
from the same distribution. Finally, they reproduced the overall
population distribution by means of proportion estimates for pre-
defined intervals. We predicted that the participants would often
make point estimates close to the population mean for new com-

panies, regardless of the distribution shape and despite their de-
monstrably accurate knowledge of the distribution shapes when
probed with proportion estimates.

Method

Participants. Fifteen male and 15 female undergraduate stu-
dents from Umeå University with an average age of 25 years each
received 150 Swedish kronor (approximately $20) for their partic-
ipation.

Materials and apparatus. The computerized judgment task
involved estimation of revenues of fictive companies. Two distri-
butions of 60 revenues, a symmetrical unimodal distribution (beta
distribution with � � � � 3.4), and a symmetrical bimodal
distribution (beta distribution with � � � � .33) defined the two
conditions. Both distributions were linearly transformed to a [1,
1,000] interval. For each participant, the revenues were randomly
paired with one of 156 company names.

Design and procedure. Participants were randomly assigned
to the unimodal or the bimodal conditions. During learning, par-
ticipants were presented with a company on each trial and were
asked to guess its revenue, after which they received feedback on
the correct revenue. Learning continued until either a correct rate
of 40% (24) of the 60 values had been achieved or a maximum of
400 trials was reached. A response was considered correct if it
exactly matched the correct revenue, and a value was required to
be correctly reported once. In a test phase, point estimates were
obtained for each of the 60 old companies from the learning phase
and for 60 new companies. Participants also assessed how many of
the 60 companies that were encountered in the training phase fell
into 10 predefined, equally wide intervals ([1, 100], [101,
200], . . . , [901, 1,000]).

Results and Discussion

Figures 2A and 2B present average assessed distribution shape
based on assessing relative frequencies (proportions) that fall in 10
intervals on the continuum (the grey bars), compared with the
objective distribution shapes (the white bars). The empirical dis-
tributions of point estimates for old exemplars seen in training are
presented in Figures 2C and 2D, and the empirical distributions of
point estimates for new exemplars first encountered in the test
phase are presented in Figures 2E and 2F; in both cases, they are
classified in the same 10 intervals on the continuum (grey bars).
(The black bars in Figures 2C–2F for model predictions are dis-
cussed later.)

Figure 2 suggests three conclusions. First, with relative fre-
quency estimates, the participants had fairly accurate knowledge of
the underlying distributions, reproducing the unimodality in the
unimodal condition and the bimodality in the bimodal condition
(see the white bars in Figures 2A and 2B). However, it is also clear
from Figure 2 that although the participants were able to reproduce
the unimodal distribution almost perfectly, performance was some-
what poorer in the bimodal condition, and the mean absolute error
from the correct distribution was larger in the bimodal condition
(.048 vs. .023 in the unimodal condition), t(27) � 3.77, p � .001.

Second, although the point estimates for old exemplars (the grey
bars in Figures 2C and 2D) reproduce the underlying distributions
(the white bars in Figures 2A and 2B), in both conditions, there is
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a relative shift for the new exemplars toward more predictions in
the intervals 450 and 550 close to the mean of the distribution (the
grey bars in Figures 2E and 2F). In the unimodal condition, the
proportion of point estimates in the 450 and 550 intervals in-
creased from 26% on average for old exemplars to 57% on average
for new exemplars, t(15) � 4.20, p � .001. In the bimodal
condition, the proportion of point estimates in the 450 and 550
intervals increased from 7% on average for old exemplars to 27%
on average for new exemplars, t(15) � 2.62, p � .020.

For each individual participant and each of the distributions
presented in Figure 2 (assessed distribution shape, distribution of
point estimates for old exemplars, and the distribution of point
estimates for new exemplars), we fitted � and � parameters of a
beta distribution to the distributions and classified them as uni-
modal if � � 1 or � � 1 (or both) and as bimodal if both � � 1
and � � 1. In the unimodal condition, 100% of the assessed
distribution shapes, 100% of the distributions of point estimates for
old exemplars, and 100% of the distributions of point estimates for
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B Bimodal Condition - Estimates of Relative Frequency
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C Unimodal Condition - Old Exemplars
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D Bimodal Condition - Old Exemplars
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E Unimodal Condition - New Exemplars
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F Bimodal Condition - New Exemplars
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Figure 2. Average assessed distribution based on assessing relative frequency (A and B, grey bars) compared
with the objective distribution shapes (A and B, white bars), and the empirical distribution of point estimates for
old exemplars (C and D, grey bars) and the empirical distribution of point estimates for new exemplars (E and
F, grey bars) compared with model predictions (black bars), shown for the unimodal (A, C, and E) and bimodal
(B, D, and F) distributions separately.
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new exemplars were classified as unimodal. In the bimodal con-
dition, 87% of the assessed distribution shapes, 100% of the
distributions of point estimates for old exemplars, but only 7% of
the distributions of point estimates for new exemplars were clas-
sified as bimodal. In the bimodal condition, 87% of the partici-
pants predominantly made point estimates in the middle categories
with the lowest probability of including the value, at the same time
disclosing accurate knowledge about the bimodal distribution
shape when probed in terms of proportions.

Third, there is a bias to make low point estimates that is
especially pronounced for new exemplars. A two-way mixed anal-
ysis of variance (ANOVA) with condition (between subjects) and
old versus new exemplar (within subjects) as independent vari-
ables and mean point estimate as the dependent variable shows a
significant main effect of old versus new exemplar, F(1, 28) �
10.16, p � .003, MSE � 7,560, but no significant effect of
condition, F(1, 28) � 2.15, p � .153, MSE � 10,127, and no
significant interaction, F(1, 28) � 1.20, p � .282, MSE � 7,560.
The mean point estimate for the old exemplars was 481.7 (H0 �
500), t(29) � 2.09, p � .045, and the mean point estimate for the
new exemplars was 410.1 (H0 � 500), t(29) � 3.91, p � .001. The
mean point estimate for new exemplars is significantly lower than
500 in both the unimodal condition (M � 441.5), t(14) � 2.41, p �
.030, and the bimodal condition (M � 378.7), t(15) � 3.18, p �
.007.

Notably, in the bimodal condition, there are two spikes in the
distribution of point estimates for new exemplars, one across
the two middle categories (450 and 550), as expected if the
participants use a mean strategy, but also and more unexpect-
edly, one in the lowest category (50) that is not matched by a
spike in the highest category (950). In principle, the spike of
responses in the lowest category could represent an emergent
insight about the bimodal distribution shape, along with a
consequent shift from a mean strategy that implies guessing in
a region that is very unlikely to include the value to a maxi-
mizing strategy in which participants instead attempt to maxi-
mize the probability of accuracy by guessing in a region that is
more likely to includes the value.

This “shift-to-maximization” explanation of the bias is inconsistent
with the results reported in this article on at least three grounds. First,
the spike is only in the lowest category (50), not in the equally
maximizing highest category (950). If the goal was to maximize, there
are just as good reasons to make a guess in the highest category.
Second, the maximizing account implies that the bias should only be
observed for the bimodal distribution; in the unimodal distribution, the
maximizing response is in the middle categories (450, 550), which
does not imply any bias to make low point estimates. However, the
bias to make low point estimates that is particularly strong with new
exemplars exists for both unimodal and bimodal distributions. Third,
and foreshadowing results from Experiment 4, the bias to make low
point estimates, if anything, decreases rather than increases with
additional knowledge of the distribution, which appears inconsistent
with the effect arising from better insights about the distribution
shape.

All of the above properties are consistent with a recognition-
based inference. In the past decade, extensive research has indi-
cated that recognition memory plays a large role in how people
make judgments, as inspired by the recognition heuristic (RH), a
term coined by Goldstein and Gigerenzer (1999). The journal

Judgment and Decision Making recently dedicated three special
issues to this construct. In an editorial note in the first of these
issues, Marewski, Pohl, and Vitouch (2010) formulated the RH as
follows: “If there are N alternatives, then rank all n recognized
alternatives higher on the criterion than the N � n unrecognized
ones” (p. 207, italics in original). The heuristic helps people to
make inferences about an object’s criterion value when recognition
memory is correlated with the criterion value, as is often the case
(Marewski et al., 2010).

We surmise that the asymmetry in our results in terms of a
disproportionately large amount of estimates in the lower ranges
for new (unrecognized) items stems from a recognition-based
strategy similar to the recognition heuristic, in that people infer
that a recognition failure signals that the value of the object is low
(“Small X if not recognized X”; see McCloy, Beaman, Frosch, &
Goddard, 2010). Research has shown that people tend to rely more
on the RH in environments in which it actually works and recog-
nition validity is high (Gigerenzer & Goldstein, 2011). The cover
story in the tasks addressed in this article concerned the revenue of
companies, a criterion variable likely to be associated with high
recognition validity in real environments. In other words, in gen-
eral, the fact that you recognize a company suggests that it is a
large company with large revenue rather than small company. A
second and related possibility is that high numeric values may be
intrinsically more memorable than low values, something that
would offer recognition validity also directly in the laboratory
setting. There are results in the following experiments that support
this possibility (e.g., Experiment 2). Although the RH focuses
comparisons between objects, we propose a mechanism that refers
to inferences from recognition failures for single objects. Because
of this discrepancy, we term this strategy a recognition failure
heuristic (RFH), while we acknowledge that the concept is in-
spired by the RH.

This account explains why there is a bias to make low estimates
in the distribution, why it applies both to the unimodal and the
bimodal distributions, and why its prevalence does not increase
with additional training. It also implies that, although the bias
should occur in both distribution conditions, it should be nominally
larger in the bimodal condition than in the unimodal condition.
Because of the distribution shapes, the examples of low values
retrieved by a participant in the bimodal condition are likely to be
lower than the examples of low values retrieved by a participant in
the unimodal condition. In the next section, we incorporate this
recognition-based inference within the NSM framework to con-
trast models assuming short-term memory versus LTM constraints
on sample size.

A naı̈ve point estimation (NPE) model. In this section, we
outline a model for NPE. The formal model and the model-fitting
procedure are presented in the Appendix. The model is intended to
reproduce the four distributions presented in Figures 2C, 2D, 2E,
and 2F, that is, the distributions of separate point estimates for old
and for new exemplars classified in terms of the 10 intervals across
both the unimodal and the bimodal conditions (N � 40, df � 36).

In regard to point estimates, the model illustrated in Figure 3
assumes there are three possible processes when an individual is
presented with a probe X and asked to give a best estimate of the
value of X. First, if it is possible to retrieve the value of X from
LTM, this value is the point estimate (direct retrieval; left branch).
Second, if the value cannot be retrieved from LTM, the response
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is derived from one of two inference rules. In both cases, a small
sample (SSD) is activated in short-term memory. In the first case
(NPE; middle branch), the mean of the SSD is reported as the point
estimate (e.g., “the value of X is probably close to the sample
mean, like most of the other values in the sample distribution”). In
the second case (RFH; right branch), the lowest value in the SSD
is reported (e.g., “Small X if not recognized X”). The distributions
of responses, if all responses are given by a single strategy, are
shown in the two bottom rows of Figure 3, when the underlying
distribution is either unimodal (top row) or bimodal (bottom row).
The probability that a response for an old probe is generated by
retrieving a value from the SED in LTM is given by NSED/NTot,
where NSED is the number of items seen in training that are stored

in LTM and NTot is the total number of items in the training
distribution. Further, the probability that a value, which cannot be
retrieved from LTM, is point estimated by NPE is given by s. Thus,
the resulting distribution of point estimates (DPE) will be a linear
combination of the three types of responses (i.e., a weighted mixture
of the direct retrieval, NPE, and RFH distributions) given by

DPE �
NSED

NTot
DR � �1 �

NSED

NTot
�
sNPE � 
1 � s�RFH�. (1)

For old exemplars (grey bars in Figures 2C and 2D), the
distribution is a mix of direct-retrieval responses (for old ex-
emplars whose revenues can be retrieved) and NPE and RFH

Probe
What is the 
value of X?

Can the value of X 
be retrived from 

LTM?
Yes No

Tot

SED

N
N

Tot

SED

N
N

−1

Retrieve SSD
The value of n
observations is 

retrieved from LTM

Choice of 
inference rule. 

Direct retrieval
Report the exact 

value of X

Point estimation
Report mean 

observation in SSD

s

Recognition failure heuristic
Report lowest observation in 

SSD

s−1

Figure 3. Schematic outline of the naı̈ve point estimation model including three types of responses: direct
retrieval, naı̈ve point estimation, and recognition failure heuristic. The bottom two rows of probability density
functions illustrates the predicted densities of the three respective processes when the underlying distribution is
unimodal (top row) and bimodal (bottom row). The density function of the entire process will be a weighted
average of these three densities. The weight each response type receives is determined by NSED and s. LTM �
long-term memory; SSD � subjective sample distribution; SED � subjective environmental distribution; Tot �
total.
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responses (for old exemplars whose revenues cannot be re-
trieved). For the new exemplars (grey bars in Figures 2E and
2F), no values can be retrieved and the distribution is a mix only
of NPE and RFH responses.

Model fitting. We fitted two versions of the model described
in Equation 1 to the participants’ point estimates for new and old
exemplars. In the STMC version of the model, the size of the SSD
was set to 4 (i.e., nSSD � 4) and, in the long-term memory
constrained (LTMC) version, the size of the SSD was set to be
equal to the size of the SED (i.e., nSSD � NSED). In the STMC,
nSSD was fixed to 4 for three reasons: First, this makes the number
of free parameters in the two models the same. Second, the
capacity of short-term memory is typically estimated to approxi-
mately 4 � 2 units (Cowan, 2001). Third, and a related point,
previous applications of the NSM have made this assumption with
good descriptive accounts of the data (see Hansson et al., 2008;
Juslin et al., 2007).

These models had two free parameters (s and NSED) that were
fitted simultaneously to the 40 data points for the proportions of
point estimates in the 10 equally wide intervals for new and old
exemplars in the unimodal and bimodal conditions (for further
details on the model fitting, see the Appendix). The STMC
model achieved a good fit (r � .97, root-mean-squared devia-
tion [RMSD] � .023, se � .024) with parameters indicating that
the participants often used retrieval when making judgments for
the old exemplars (NSED/NTot � .84), while responses for new
exemplars were predominantly generated by NPE and to a
lesser extent by use of the recognition inference (s � .72). The
model essentially saturates the data with an RMSD that is close
to the standard errors (se) for the data points, suggesting that the
model accounts for most the true variance in the data.

Figures 2 illustrate the ability of the STMC model to reproduce
the qualitative pattern of responses in both the unimodal (see
Figures 2C and 2E) and the bimodal (see Figures 2D and 2F)
condition and for both new (see Figures 2E and 2F) and old (see
Figures 2C and 2D) exemplars. Notice that the model is able to
reproduce three important patterns in the data: (a) the different
distributions for old exemplars in the two distributions; (b) the
distributions of new responses that are a result of the RFH re-
sponses, with the distinctive spike of a relatively high proportion
of responses in the lowest interval for point estimates of new
exemplars in the bimodal condition (see Figure 2F) and the posi-
tive skew in the distribution of point estimates of new exemplars
in the unimodal condition (see Figure 2E); and (c) the high
proportion of responses, generated by use of NPE, in the midin-
tervals for new exemplars in the bimodal condition. The model fits
in Table 1 also indicate worse fit for the LTMC version (r � .86,
RMSD � .057, se � .024) than for the STMC version, with RMSD
that substantially exceeds the error variance in data. In addition, a
sign test revealed a near significant difference in RMSD when the
two versions of the model were fitted to individual data (Z � 1.80,
p � .07; MdnSTMC � .055 vs. MdnLTMC � .068).

In sum, participants have accurate knowledge of distribution shapes
with relative frequency estimates but often prefer midinterval point
estimates for the new exemplars in both conditions. In the bimodal
condition, many participants guessed in the middle of the interval for
new exemplars, despite manifest knowledge that the revenues are
rarely found there. A model allowing all exemplars in the SED to be

available as a basis for point estimates describes the data much more
poorly than a model only allowing a small, STMC sample.

Experiment 2: A Response to the Distribution?

It could be that the results of Experiment 1 reflect a more
superficial default response strategy to respond in the middle of the
admissible response interval, when the participants have no knowl-
edge at all of the company, rather than being based on properties
of a sample retrieved from the distribution experienced in training.
In Experiment 2, we used two skewed distributions to differentiate
between a response strategy driven by the use of small samples and
such a default midinterval response strategy. If the results reflect a
default midinterval response strategy, participants having experi-
enced distributions in the same range but of opposite skew will
respond identically to new objects. We expected, however, that the
responses would be sensitive to the central tendency of the respec-
tive distribution and thus differ between conditions.3

3 Notice that a skewed distribution analogue to those on the right side of
Figure 1 would be a unimodal distribution with the same mean as the
original skewed distribution. Thus, using a positively skewed distribution
and a negatively skewed distribution would also separate responses close to
the mean of a unimodal sample distribution.

Table 1
Model Fit for Models Constrained by Short-Term Memory
Capacity (STMC) and Long-Term Memory Capacity (LTMC) in
the Four Experiments

Condition and model se RMSD r NSED/NTot s

Experiment 1

STMC (n � 4) .024 .023 .97 .84 .72
LTMC (n � NSED) .024 .057 .86 .83 .70

Experiment 2
Positive skew

STMC (n � 4) .025 .025 .94 .88 .66
LTMC (n � NSED) .025 .077 .80 .87 .58

Negative skew
STMC (n � 4) .024 .040 .79 .83 .71
LTMC (n � NSED) .024 .083 .37 .20 .73

Experiment 3

Continuous
STMC (n � 4) .028 .027 .95 .84 .83
LTMC (n � NSED) .028 .133 .74 .81 .61

Experiment 4

Short
STMC (n � 4) .031 .044 .85 .74 .71
LTMC (n � NSED) .031 .077 .68 .17 .67

Medium
STMC (n � 4) .029 .049 .81 .79 .74
LTMC (n � NSED) .029 .087 .54 .17 .69

Long
STMC (n � 4) .020 .036 .90 .77 .78
LTMC (n � NSED) .020 .082 .70 .80 .70

Note. RMSD � root mean squared deviation; SED � subjective envi-
ronmental distribution; Tot � total.
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Method

Participants. Nine male and 17 female undergraduate stu-
dents from Uppsala University with an average age of 23.3 years
participated in exchange for a movie ticket.

Materials and procedure. The experiment was performed in
the same way as Experiment 1, except that the training phase
involved 50 companies and the two conditions were defined by
two bimodal distributions, one negatively skewed (beta distribu-
tion with � � .6, � � .4) and one positively skewed (� � .4, � �
.6). Both distributions were linearly transformed to a [1, 1,000]
interval. The test phase consisted of 50 old and 50 new exemplars.
The learning phase stopped when the participants reached a total of
25 correct responses, using the same criterion as in Experiment 1,
or had completed 400 trials.

Results and Discussion

As in Experiment 1, participants in Experiment 2 correctly
reproduced the bimodal distribution shape for the bimodal
distributions but, more surprisingly, found the distribution with
positive skew more difficult to learn (.047 vs. .034 with nega-
tive skew), t(22) � 3.7, p � .001. Note that the finding that the
distribution with negative skew is easier to learn is consistent
with the assumption behind an ecological rational for the RFH
responses; that is, larger values are more easily remembered.
Point estimates in the interval [500, 700] in the negatively
skewed condition and in the interval [300, 500] in the positively
skewed condition were classified as mean responses (MRs; i.e.,
close to the mean). With negative skew, the rate of MR in-
creased from 23% for old exemplars to 49% for new exemplars,
t(13) � 2.97, p � .012. With positive skew, the rate of MR
increased from 17% for old exemplars to 34% for new exem-
plars, t(13) � 2.37, p � .036. In statistical tests for the indi-
vidual participants across both conditions, there was a signifi-
cant shift toward more MR in 11 participants, a reverse shift in
one participant, and a nonsignificant shift in 14 participants
(� � .05). Crucially, the mean point estimates for new exem-
plars was significantly higher in the condition with a negative
(M � 483, SD � 118) than with a positive (M � 345, SD �
125) skew, t(24) � 2.88, p � .008, suggesting sensitivity to the
sample central tendency.

We fitted the STMC and LTMC versions of the NPE model to
the positive and negative skew conditions separately. The results,
summarized in Table 1, indicate a better fit for the STMC version
than the LMTC version in both the positive skew (for STMC, r �
.94, RMSD � .025, se � .025; for LMTC, r � .80, RMSD � .077,
se � .025) and negative skew condition (for STMC, r � .79,
RMSD � .040, se � .024; for LMTC, r � .37, RMSD � .083, se �
.024). It is also evident that STMC model provides somewhat
better fit in the condition with positive skew. This is probably
because the SED of the NSM fails to capture the memory advan-
tage for large values and, thus, does not capture the boost in
learning seen in the negative skew condition. Further, comparing
the two models when fitted to individual data with a sign test
revealed a significant difference in RMSD (Z � 4.5, p � .001;
MdnSTMC � .061 vs. MdnLTMC � .096).

Experiment 3: Inviting the Assessment of Proportions
and Introduction of Explicit Incentives to Maximize

The results of Experiments 1 and 2 confirm the prediction that
participants make point estimates close to the mean in the bimodal
distribution even when they can correctly recreate the distributions
shape with estimates of relative frequency. The NSM suggests
that, at least in part, this is because different processes are elicited
during retrieval, suggesting that it is possible to influence the percep-
tion of distributions by eliciting different cognitive processes during
retrieval or encoding of the variable. In Experiment 3, we investigated
this possibility by manipulating how people perceive a distribution by
varying the cognitive processes during encoding.

In the first two experiments, the participants experienced a contin-
uous variable, which probably required them to rely on small samples
to make point estimates, inviting a perception of unimodality. How-
ever, partitioning the variable into ordinal categories using labels
(Small, Quite small, Medium, Quite large, Large) should encourage
the possibility of retrieving samples on the basis of these nominal
categories and assessing the proportion in each category. This, in turn,
should make it easier to perceive the distribution shape as bimodal and
thus invite relatively more guessing in the most frequently occurring
extreme categories of the interval.

In Experiment 3, half of the participants trained to make point
estimates for a bimodal continuous variable; the other half trained to
categorize values into one of five ordinal categories. In both cases, as
in Experiments 1 and 2, the feedback training informed the partici-
pants of the correct value. We predicted that categorization training
would give participants a better idea of the overall distribution shape
and therefore reduce the rate of MRs. Note the alternative possibility:
It could be that the MRs in the bimodal conditions are based on an
accurate perception of the bimodal distribution shape at the time of
judgment but that participants are nonetheless strongly guided by
intuitions to make mean point estimates, for example, because they
entertain some intuitive version of least-squares minimization. If this
is true, training with categories, in addition to feedback about the
continuous value, should have no effect on this basic normative
intuition. However, if the MRs are mediated partially or wholly by
reliance on small samples that fail to disclose the bimodal distribution
shape, coding the observations in terms of category proportions
should highlight the distribution shape.

A second purpose of Experiment 3 was to investigate the ro-
bustness of the mean strategy. It could, again, be argued that the
participants in Experiments 1 and 2 had an accurate conception of
the bimodal distribution shape at the moment of judgment, but they
relied on some loss function that nonetheless reinforces a mean
strategy. Although we find the reliance on such a loss function
rather implausible already on psychological grounds, in Experi-
ment 3, an explicit loss function reinforcing maximizing behavior
in the form of a bonus for correct guesses (close to the distribution
mode) was introduced to half of the participants. We expected the
participants would already rely on such a loss function and thus to
be unaffected by this manipulation.

Method

Participants. Eighteen female and 22 male undergraduate
students from Uppsala University with an average age of 24.8
years were given a movie ticket or course credits in exchange for
their participation.
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Materials and procedure. The training phase involved 60
companies, and all conditions used a symmetric bimodal distribution
(beta distribution with � � � � .33) on the interval [0, 1,000]. The
experiment was a 2 � 2 � 2 factorial design with response format in
the learning phase (continuous, category), response format in the test
phase (continuous, category), and monetary incentive in the test phase
(yes, no) as between-subjects variables. Participants were randomly
assigned to one of the eight conditions. In the continuous format
condition, participants responded with a number from 0 to 1,000, and
in the category format condition they responded by choosing one of
five text- and interval-labeled categories (Small [0, 200], Quite small
[201, 400], Medium [401, 600], Quite large [601, 800], Large [801,
1,000]). After each guess, participants in both conditions were shown
the correct value in the same continuous format. Learning continued
until participants had made correct predictions on 50 of the 60
companies or 400 trials had been completed. A guess was considered
correct if it was within a 200-unit interval around the actual value of
the company’s revenue. The test phase consisted of 60 old and 50 new
exemplars. In the monetary incentive condition, participants were
informed in the test phase that they would be paid a bonus propor-
tional to the degree to which their answers were close to the actual
values. They were instructed that for each point estimate that came
within 100 units of the actual revenue, they would receive a bonus
point and that a sufficient number of bonus points would earn them
additional movie tickets. Thus, the instructions made it obvious to
participants that an all-or-none incentive structure was used in the
experiment.

Results and Discussion

There were no large or statistically significant effects of test con-
dition or monetary incentive, and the data were collapsed into training
with continuous or category predictions. Figure 4 presents the average
assessed distribution by estimates of relative frequency, the distribu-
tion of point estimates for old exemplars, and the distribution of point
estimates for new exemplars for the continuous (see Figure 4A) and
category (see Figure 4B) conditions, respectively. Figure 4 suggests
that the participants have accurate knowledge of the distributions
when the knowledge is elicited with frequency estimates and that the
shift of point estimates toward MRs occurs mainly in the continuous
condition. The point estimates in the 500 ([401, 600]) interval and
choices of the corresponding middle category were classified as MRs.
The proportion of MRs was entered into a two-way ANOVA with
response format in the learning phase (continuous/category, between
subjects) and type of exemplar (new/old, within subject) as indepen-
dent variables. There was a significant main effect of response format,
F(1, 38) � 4.46, p � .04, MSE � .03, with more MR with the
continuous (M � .24, SD � .20) than with the category (M � .15,
SD � .13) format and a main effect of exemplar type, F(1, 38) �
25.49, p � .001, MSE � .02, with more MR for new (M � .27, SD �
.21) than for old (M � .12, SD � .07) exemplars. The interaction was
not significant, F(1, 38) � 2.66, p � .11, MSE � .02.

We fitted the STMC and LTMC models to data from the contin-
uous training condition, where participants were training and memo-
rizing point estimates as presumed by the models. The results, sum-
marized in Table 1, show a better fit for the STMC version than the
LTMC version (for STMC, r � .95, RMSD � .027, se � .028; for
LMTC, r � .74, RMSD � .133, se � .028). Notice also that the fit of
the STMC version is close to the standard error (se) of the data points.

Further, a sign test revealed a significant difference in RMSD when
the two versions of the model were fitted to individual data (Z � 3.4,
p � .001; MdnSTMC � .081 vs. MdnLTMC � .145). In sum, as
predicted, the mean strategy was less prevalent after training with a
category task that highlighted the bimodal distribution shape and the
mean strategy effect proved resistant to monetary incentives.

Experiment 4: The Effects of Experience

Experiment 4 was designed to test the predictions related to
experience (NSED) and variation of point estimates. In Experiment
4, half of the participants trained with a unimodal distribution and
the other half trained with a bimodal distribution. Further, half of
the participants in each distribution condition had their training
divided into three segments with tests occurring in between to
capture the training effects, whereas half of the participants were
tested only at the end of training. The NSM predicts that NSED

should increase with training but that the STMC version of NSM
(n � 4) should provide better fit. If the tendency to place point
estimates in the lowest category, seen in the previous experiments,
is a shift to maximization based on accurate knowledge of the
bimodality in the distribution, the proportion of these responses is
expected to increase as learning progresses. If, however, these
responses arise from a RFH, as assumed here, the proportion of
responses should, if anything, decrease rather than increase with
additional knowledge of the distribution. To replicate the findings
of Experiment 3 of the robustness of the mean strategy even with
an incentive to discourage participants from relying on it, we
implemented the same all-or-nothing payoff structure.

Method

Participants. Thirty-two female and 16 male undergraduate
students from Uppsala University with an average age of 24.7 years
were given a movie ticket or course credits in exchange for their
participation.

Materials. The learning phase used the same two distributions
as in Experiment 1, that is, a symmetrical unimodal distribution (beta
distribution with � � � � 3.4) and a symmetrical bimodal distribu-
tion (beta distribution with � � � � .33). Both distributions were
linearly transformed to a [1, 1,000] interval. For each participant, the
numbers were randomly paired with one of 156 company names.

Design and procedure. The experiment was a 2 � 2 factorial
design with distribution (unimodal, bimodal) and exposure (full,
segmented) as between-subjects variables. Participants were ran-
domly assigned to one of the four conditions. The learning phase
in the full condition was similar to that of Experiment 1. However,
it consisted of five blocks in which each of the 60 items were
shown once, in randomized order. At test, point estimates were
obtained for a random selection of 15 of the presented (old)
companies and 15 new companies. Participants also assessed the
proportion (expressed as a percentage) of companies that fell into
10 predefined, equally wide intervals ([1, 100], [101, 200], . . . ,
[901, 1,000]). In the segmented condition, the learning phase was
interrupted after the first, second, and fifth blocks with a test.

Participants were given a monetary reward contingent on the ac-
curacy of their point estimates at test. They were instructed that for
each point estimate that came within 100 units of the actual revenue,
they would receive a bonus, which could be cashed in as additional
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movie tickets. Thus, as in Experiment 3, the instructions made it clear
that an all-or-none incentive structure payoff was used.

Results and Discussion

Friedman ANOVAs revealed that the mean variance of the point
estimates for new exemplars was unaffected by test round both in the
bimodal condition, 
2(2, N � 12) � 0.17, p � .92, and in the
unimodal condition, 
2(2, N � 12) � 1.5, p � .47. There was

significantly lower variance (Mann–Whitney U � 27.0, Z � 2.57,
p � .01) in the unimodal condition (M � 188, SD � 161) than in the
bimodal condition (M � 270, SD � 214).4 There was no difference

4 The same results were obtained when analyzing point estimates on all
exemplars in the segmented condition and both new and all exemplars in
the full condition.

Figure 4. Average assessed distribution of frequency estimates, the distribution of point estimates for old
exemplars, and the distribution of point estimates for new exemplars in Experiment 3, for the continuous training
condition (A) and the category training condition (B).
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in the variance of point estimates in the full condition and the three
tests in the segmented condition for either of the distributions.

The results were similar to those of Experiment 1, with esti-
mates of relative frequency and point estimates for old exemplars
mirroring the underlying distribution shape while a disproportional
number of point estimates for the new exemplars in the bimodal
condition come close to the distribution mean. Figure 5 shows the
main findings, which highlight the proportion of point estimates
for new exemplars that fall in the middle (400–600) and the
extreme categories (low � 0–200, high � 800–1,000). Figure 5A
shows the results in the full condition and the final test of the
segmented condition. It can be seen that the responses in the
middle category are the most numerous in both conditions and
over both distributions, with a slightly stronger tendency for this in

the segmented condition. There were no statistically significant
differences between these conditions at the same amount of train-
ing. This shows that there is no effect of the repeated testing
procedure of participants in the segmented condition.

The previous results showed behavior consistent with STMC
NPE. If the results are a mixture of RFH and NPE responses, it is
reasonable to assume that RFH responses will be more frequent
initially when the task is unfamiliar and knowledge is scarce. If the
point estimates in the lowest category, on the contrary, derive from
an insight about the bimodal distribution shape along with an
ambition to make estimates in a region where most values fall
(maximizing), this tendency should increase with more training, as
the participants get a better conception of the distribution shape.
Figure 5B illustrates the proportion of the point estimates for new
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Figure 5. Proportion of point estimates on new exemplars in the low, medium, and high category in the
unimodal and bimodal conditions for the full and segmented conditions, shown for the final test (A) and divided
over three test rounds in the segmented condition (B).
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exemplars as a function of learning in the segmented condition for
both distributions. The proportion of low responses in the bimodal
condition is initially high but decreases with training in parallel
with an increase of mean responses. The proportion of mean
responses also increases with training in the unimodal condition.
This pattern is consistent with the idea that responses are a mixture
of RFH and NPE responses, where the proportion of NPE re-
sponses relative to RFH responses increases with training, consis-
tent with the STMC model with an increase in the value of s with
training.

There were no significant differences between data from the full
condition and from the third test round in the segmented condition.
We therefore collapsed the data for these two tests and fitted the
models to the data for short (segmented, Test 1), medium (seg-
mented, Test 2), and long (segmented, Test 3 and full collapsed)
training separately. For all three training lengths, this was done for
both the STMC and the LTMC versions of the model. Two
participants, who placed more than two thirds of point estimates on
old exemplars in a single interval in one or more of the three tests
and thus indicated poor learning, were removed from the fitting
procedure. The results, summarized in Table 1, show a better fit for
the STMC than the LTMC version in short (e.g., r � .85 vs. r �
.68), medium (r � .81 vs. r � .54), and long (r � .90 vs. r � .70)
training. The fit improves as training progresses (STMC r � .85,
.81, and .90, respectively) and the relative use of NPE responses
over RFH responses increases as training progresses (STMC s �
.71, .74, and .78, respectively) as predicted. The proportion of
responses directly retrieved from memory for point estimates of
old exemplars increases from the first to the second test but then
slightly decreases (STMC NSED/NTot � .74, .79, and .77, respec-
tively), indicating little additional learning from the second to the
third test. Further, a sign test revealed a significant difference in
RMSD when the two versions of the model were fitted to individ-
ual data for the long training (Z � 4.7, p � .001; MdnSTMC � .090
vs. MdnLTMC � .103).

In sum: the variability of the point estimates was not signifi-
cantly affected by the size of the SED (learning), supporting the
idea that participants rely on a capacity-constrained sampling
process, as implied by the NSM. Further, the tendency in the
previous experiments to place a disproportionate proportion of
point estimates for new exemplars close to the distribution mean
was replicated. This tendency persisted with an explicit all-or-none
monetary incentive structure. Participants in the bimodal condition
placed 25% of their point estimates in an interval near the distri-
bution mean ([400, 600]), when the distribution only contained 7%
of its exemplars.

General Discussion

An extensive body of research suggests that people’s judgments
are constrained both by the reliance on small samples of informa-
tion (e.g., Juslin et al., 2007; Stewart et al., 2006) and by limita-
tions in short-term memory capacity (Dougherty & Hunter, 2003;
Gaissmaier et al., 2006; Hansson et al., 2008; Kareev et al., 2002).
In the present article, we extend this work, proposing that such
limitations also influence how people make point estimates of
unknown quantities. In four experiments, we compared the pre-
dictions by two possible accounts of how people use their knowl-

edge of statistical distributions to make point estimates of un-
known quantities.

Main Findings

The results comprise three main findings. First, across all four
experiments, the results consistently favored the naı̈ve sampling
account of point estimation, suggesting that people base their point
estimates on properties of a small sample constrained by short-
term memory (the SSD) drawn from exemplars stored in memory
(the SED) during training rather than having access to represen-
tations that benefit from most or all of the experience that is
acquired during training.

Second, the results of the experiments documented the operation
of an unexpected recognition-based inference, whereby the partic-
ipants, in the absence of other information, guessed that an unrec-
ognized company is more likely to have low rather than high
revenue. Only after considering this additional mechanism could
the models appropriately account for the data.

Third, the results also document limitations of the naı̈ve sam-
pling framework. In Experiment 1, it was clear that the participants
found it much easier to learn a unimodal than a bimodal distribu-
tion. Although this finding, in general terms, is consistent with the
claim that use of small samples may contribute to a belief or
expectation that most distributions are normally distributed, there
is no mechanism in the NSM that captures such an effect. Like-
wise, there is no mechanism that captures the better memory for
large than small values in this specific task that drives the
recognition-based inference and that makes the distribution with
negative skew in Experiment 2 easier to learn than the distribution
with positive skew.

Intriguingly, the NSM predicts point estimates close to the mean
of the distribution regardless of the distribution shape, while at the
same time it predicts an ability to reproduce the distribution when
using unbiased estimators. Experiment 1 revealed that people do
have a tendency to place point estimates of unknown quantities
close to the distribution mean, both when the distribution is uni-
modal and when the distribution is bimodal. As illustrated in
Figure 2B, even though the participants placed a disproportional
proportion of point estimates for new exemplars in the midinterval
of the distribution range, at the same time, they showed manifest
knowledge of the shape of the bimodal distribution when repro-
ducing it with estimates of relative frequency. Experiment 2
showed that participants were sensitive to the distribution mean
and that the tendency to make point estimates close to the distri-
bution mean was not the result of a superficial default response
strategy. In Experiment 3, it was shown that a manipulation
improving the participants’ ability to detect the bimodal distribu-
tion shape reduced the rate of mean responses, as expected if they
are at least in part based on an inability to detect the distribution
shape from small samples.

Whether it is a normative error to place point estimates close to
the mean of a distribution is, of course, dependent on the loss
function assumed (Weber, 1994; Winkler, 1970). However, it is
not self-evident why people should have developed an intuition for
prediction that coincides with, specifically, minimization of least
squares. One possibility is that people have a default loss function
related to an a priori assumption of normality of the underlying
distribution, because most real-world distributions are unimodal.
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This would render people not only intuitive statisticians but intu-
itive parametric statisticians. Winkler (1970) showed that it is
possible to change people’s response strategies by implementing
different loss functions on their judgments. In Experiment 3, we
tested whether the tendency to place point estimates near the
distribution mean persisted when a loss function that explicitly and
strongly rewarded point estimates near the modes of the underly-
ing bimodal distribution was introduced. We found that our par-
ticipants continued to place point estimates close to the distribution
mean even under the explicit all-or-none loss function, a finding
that was replicated in Experiment 4. It should be noted that there
is a crucial difference between the study by Winkler (1970) and
ours. In Winkler’s study, participants were explicitly told what loss
function to use, whereas we introduced it with the aid of a
monetary incentive. An important goal for future researchers is to
understand what factors determine people’s choice of strategy as a
result of the implicit or explicit loss functions introduced.

In Experiment 4, we investigated how point estimates are influ-
enced by learning. The NSM predicts that the variation in point
estimates should be virtually unaffected by experience but reflect
the variance in the underlying distribution. Further, people should
continue to use a mean strategy even as they gain more experience,
because small samples fail to signal the correct shape of the
distribution even when the SED is large. As we have seen, this is
the pattern of results in Experiment 4. The results from the mod-
eling presented in Table 1 also suggest a continued use of small
samples even when learning progresses. The results moreover
suggest that the rate of low-category, recognition-based responses
diminishes rather than increases with more training.

The finding in Experiment 4 that the proportion of point esti-
mates close to the distribution mean increases with more experi-
ence suggests that the use of small samples may be contingent on
the forming of the SED. That is, even though people are inclined
to spontaneously sample from an SED when making point esti-
mates, they will do so fully only when the SED is established with
a sufficient number of exemplars in LTM. It remains for future
researchers to investigate which strategies people use when knowl-
edge is scarce (i.e., when the SED is not yet fully established) and
how such strategies influence judgments. A further empirical ques-
tion is at what point people switch to rely fully on NPE.

Limitations

Short-term memory capacity is a key limitation, but in none of
the experiments do we manipulate this capacity, for example, by
introducing cognitive load at encoding or at retrieval. Cognitive
load at the encoding would probably only influence the formation
the SED. Introducing cognitive load when the exemplars are
retrieved from the SED to the SSD is theoretically more interest-
ing, and, on the face of it, it seems plausible that this should
produce a SSD with a smaller sample size. Yet, the net effect of
such a manipulation is not entirely straightforward to predict,
considering that decreased sample size may have different effects
on the distributions generated by point estimation and by the
recognition-based inference. Indeed, sometimes the effects cancel
each other. For example, in a bimodal condition, a greater sample
size contributes both to a reduced overall variance of the responses
through its effect on the portion of responses from point estimation
and to an increased overall variance of the responses through its

effect on the portion of responses from recognition-based infer-
ences. In addition, the cognitive load may affect the balance
between these two processes or may even make the participants
resort to strategies other than the ones suggested by NSM.

The results from Experiment 1 suggested that it is easier to learn
a unimodal than a bimodal distribution. As noted, the NSM pres-
ently has no mechanism that explains such a difference. However,
research indicates that people are inclined to expect normal (or at
least unimodal) distributions in a variety of tasks (Flannagan et al.,
1986; Fried & Holyoak, 1984; Lindskog, Winman, & Juslin,
2012). An interesting question for future researchers is to integrate
such a priori expectations into models of how people learn distri-
bution shapes.

In all four experiments, the NSM parameters were fitted to
group data. It would be desirable, of course, to fit the models also
to individual participant data. In the four experiments described
above, the number of responses for each participant and each type
of response (new and old), however, made this difficult. Nonethe-
less, comparing the RMSD for the two versions of the model over
the four experiments when fitted to individual data with a sign test
revealed significantly better fit for the STMC version over the
LTMC version (Z � 7.5, p � .001; MdnSTMC � .075 vs.
MdnLTMC � .096). The same conclusion held for each experiment
separately. The NSM includes three free parameters: s, n, and
NSED. In the current description of the model and in contrast to n
and NSED, s is theoretically underspecified and, at present, it is thus
difficult to make strong predictions about s on the basis of theo-
retical or other grounds. It remains for future researchers to inves-
tigate the relationship between RFH and NPE responses to be able
to formulate stronger predictions of the value of s and the change
in value of s as knowledge goes from scarce to sufficient during
learning.

The task in the experiments is to remember presented numbers
and to learn to associate these with an appropriate label (a com-
pany name). It is probable that this undertaking is arduous and that
partly misremembered numbers become associated with wrong
labels or no labels at all. The NSED parameter (i.e., the number of
exemplars stored in LTM) is a simplification in that it disregards
this distinction. The parameter has a dual function in the model: (a)
It accounts for the number of correctly retrieved items for old
items and (b) it provides the pool from which the numbers in the
SSD are sampled for new or unrecognized items. In reality, the
latter sampling of items in the model does not depend on whether
the numbers are stored with an appropriate label; it merely samples
stored numbers irrespective of associated label. This dual role of
NSED may explain why the estimated values of the NSED in the
experiments may appear surprisingly high given the stated learning
criterion in the training phase.

For new items, a sufficiently large pool of numbers is needed in
the SED, whether or not these numbers are stored with the appro-
priate labels. A more realistic but also more complex model could
readily account for this by introducing a parameter denoting the
probability that a number is stored with or without the correct
label. We have refrained from introducing more parameters in
favor of parsimony but conclude that this comes at the cost of an
apparent overestimation of the proportion of observed items that
are correctly remembered together with their labels.

This article contrasts two possible accounts of how people use
knowledge of statistical distributions to make point estimates. It is,
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of course, also possible to formulate other accounts of how such
estimates are made. For example, it might be the case that people
are not limited to drawing just one sample prior to making a point
estimate but, rather, that they draw several samples and integrate
the information from them into a final judgment. Similarly, more
sophisticated operations on the SSD, such as trimmed means or
density estimation, could also be suggested. Such accounts, how-
ever, would place additional storage and computational demands
on the human cognitive system, demands that lie beyond the
capacity limitations documented in previous research (Cowan,
2001; Dougherty & Hunter, 2003; Gaissmaier et al., 2006; Hans-
son et al., 2008; Juslin et al., 2007; Juslin et al., 2011; Nilsson et
al., 2009; Kareev et al., 2002; Stewart et al., 2006). In this article,
we show that it is sufficient to assume that people retrieve a small
sample (e.g., Juslin et al., 2007; Stewart et al., 2006), limited by
short-term memory capacity (Cowan, 2001; Dougherty & Hunter,
2003; Gaissmaier et al., 2006; Hansson et al., 2008; Kareev et al.,
2002; Stewart et al., 2006), from memory, assuming that they base
their point estimate on the properties of that sample, to account for
the data from our four experiments.

It might also be that a substantially different account could be
equally successful in explaining the observed response patterns. One
such account that recently has received a lot of attention is a Bayesian
framework of human cognition (e.g., Chater, Tenenbaum, & Yuille,
2006; Oaksford, & Chater, 2009). In a Bayesian account, our partic-
ipants would enter the learning phase with some prior assumption of
how the revenue variable is distributed. In training, they would update
their belief about the distribution using Bayes’ theorem or some
approximation of it. In the test phase, the participants would then
express their posterior belief about the distribution.

To make point estimates, the participants could use the mean or
mode from the posterior distribution or sample a value from the
posterior distribution. In the latter case, values that are more
probable will be sampled more often. Similarly, when asked to
give the proportion of revenues in a given interval, a reasonable
strategy would be to report the density of the posterior distribution
in that interval. Thus, at least for estimated proportions and point
estimates of new exemplars, the distribution of responses should
mirror the posterior distribution.

The responses, however, suggest that if participants produce
responses by a Bayesian account, they are using different posterior
distributions in the two tasks. Although Figure 2B suggests that the
posterior distribution in the bimodal condition is a symmetrical
bimodal distribution, the posterior distribution suggested by Figure
2F is asymmetrical. In the proportion production task, the partic-
ipants’ responses mirror the underlying distribution. Considering
that the data they encounter represent a symmetrical bimodal
distribution, this would suggest that people enter the learning
phase with a uniform prior for the revenue, which is updated to
approximate the true distribution.

By contrast, Figure 2F suggests that participants in the bimodal
condition have a prior with a lot of density in the lowest interval and
the two middle intervals. It is unclear why such a prior should be
chosen over a symmetrical prior or a positively skewed prior that is
likely to map a real-world distribution of revenues. Further, compar-
ing Figures 2E and 2F, the participants in the unimodal and bimodal
conditions seem to enter the learning phase with different priors,
which is not impossible but at least extremely unlikely. Thus, to
adequately explain the data with such a Bayesian account, it would be

necessary to assume (a) the priors are intricate (but only when the
underlying distribution is bimodal), (b) that participants use different
posteriors in different tasks, and (c) that participants’ priors depend on
what underlying distribution they are exposed to.

A final and general concern about the modeling and the exper-
iments reported in this article may be that they involve a highly
idealized and simplified task. The participants can only produce
estimates in one of two ways: by retrieving the correct value from
LTM (if possible) or by inferring a likely value on the basis of the
premise that it has been sampled from the same population distri-
bution as the exemplars (companies) previously encountered. By
contrast, in most real-life point-estimation tasks, people benefit
also from a variety of probe-specific cues and similarity relations
that can be used as the input for much more elaborate reasoning.

Although ultimately, of course, the tenability of the conclusions
presented here is an empirical question, we do note some consid-
erations that mitigate this concern. The basic issues addressed in
this article—how people represent knowledge of distributions in
their environment and how this knowledge is translated into point
estimates, for example, by reporting the estimated mean or mode
as their best point estimate—apply also to more complex models
that take additional cues and similarity into consideration. In the
NSM, it would be relatively straightforward to make the probabil-
ity that a previous observation is activated in short-term memory
contingent on its similarity to the probe, in effect, transforming it
into an instance- or exemplar-based model of the sort that has been
considered in both judgment research (e.g., Dougherty, Gettys, &
Ogden, 1999; Juslin & Persson, 2002) and categorization learning
(e.g., Nosofsky & Johansen, 2000).

We thus propose that the basic conclusions formulated in the
context of the NSM are likely to apply also to the processes
captured by more elaborate models. In other words, people are
inclined to construct knowledge of distributions post hoc by re-
trieving samples, as constrained by short-term memory, and these
samples are unlikely to disclose bimodal distribution shapes.
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Appendix

A Naı̈ve Point Estimation Model

Model Description

In this Appendix, we formally outline the naı̈ve point estimation
(NPE) model. The model is used to predict the proportion of
responses (pi) in a subinterval i, with starting point �i, end point
�i 	 l and length l, of the range of the underlying distribution when
the entire range is divided into k nonoverlapping intervals. Notice
that the model does not require l to be equal for all k intervals, only
that the partition of the range be nonoverlapping and cover the
entire range. However, the modeling in this study is done with k �
10 (Experiment 3, k � 5) and with equal l for all intervals. In this
article, the underlying distribution is always a beta distribution
with parameters � and � (Beta(�, �)). Notice that this distribution
is defined on [0, 1]. The model has three parameters. NSED is the
number of exemplars stored in long-term memory (LTM). Thus,
NSED/NTot is the probability that a given probe can be retrieved
from memory. The probability that participants will use the choice
strategy NPE when they cannot retrieve the value of a probe from
memory is given by s. Finally, n is the number of items contained
in the subjective sample distribution (SSD) when sampling from
memory and is thus equivalent to short-term memory capacity.

The model predicts that the proportion of responses in an
interval is given by

DPEi �
NSED

NTot
DRi � �1 �

NSED

NTot
�
sNPE
n�i � 
1 � s�RFH
n�i�

(1)

where

DRi ��
�i

�i	l

Beta
�,�� (2)

and

NPE
n�i ��
�i

�i	l

N� �

� � �
,�1

n

��


� � ��2
� � � � 1�� (3)

where N
�, �� is a standard normal distribution with mean � and
standard deviation �. Thus, NPEi is the density of the sampling
distribution of Beta(�, �) with sample size n on the interval
��i, �i � l�. Note that as n grows large, the central limit theorem
indicates that the sampling distribution is approximately normal.
However, as illustrated by Figure A1, the sampling distribution
comes close to normal already at n � 4, motivating the use of
N
�, �� for the NPE responses. Finally,

(Appendix continues)
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RFH
n�i � 1 � ��
�i	l

1

Beta
�, ���n

� �
t�0

i�1

RFH
n�t. (4)

Thus, RFHi is the probability that the lowest value in the SSD is
found in interval i. This is a monotonically decreasing, negatively

accelerated function, which, when n is small, resembles a step
function (see Figure 3).

Model Fitting Procedure

The model was fitted to group data using least-squares nonlinear
fitting implemented in a MATLAB program. It was fitted to data
for the distribution of point estimates for new exemplars and point
estimates for old exemplars. For point estimates for new exem-
plars, we used NSED � 0. That is, when giving point estimates of
new exemplars, participants are expected to use only NPE or RFH.
For point estimates for old exemplars, NSED was a free parameter
fitted to data. We fitted the model in two versions, one where point
estimates are constrained by short-term memory capacity (STMC)
and one where point estimates are constrained by long-term mem-
ory capacity (LTMC). In the STMC version, we used n � 4, that
is, the size of the SSD is constrained to four items. In the LTMC
version, we set n � NSED, that is, all items stored in LTM will be
available in the SSD when making point estimates.

For all data sets, except the one in Experiment 3 in which we
used five intervals, we divided point predictions into 10 equally
wide intervals. Because this division of intervals is, in some way,
arbitrary, we risk introducing rounding errors into the interval-
partitioned distribution of point predictions. To avoid this, a small,
normally distributed error (� � 0, � � .1) was added to all
point estimates before we partitioned the distribution into intervals
and calculated the empirical interval proportions.
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Figure A1. The distribution of means computed from four individually
bimodal observations (black bars) and the distribution of single observa-
tions (grey bars) from a bimodal distribution. Obs � observations.
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