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a b s t r a c t

Two recent studies – one of which was published in this journal – claimed to have found that learning on
a non-symbolic arithmetic task improved performance on a symbolic arithmetic task (Park & Brannon,
2013, 2014). This finding has potentially far-reaching implications, because it would constitute evidence
for a causal link between the Approximate Number System (ANS) and symbolic-math ability. Here, we
argue that, due to the methodology used in both studies, the interpretation of data in terms of an
improvement in ANS performance is problematic. We provide arguments and simulations showing that
the trends in the data are similar to what one would expect for a non-learning observer. We discuss the
implications for the original interpretation in terms of causality between non-symbolic and symbolic
arithmetic performance.
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1. Introduction

The Approximate Number System (ANS) is thought to be a
primitive cognitive system that supports the representation of
non-symbolic magnitudes (e.g., Feigenson, Dehaene, & Spelke,
2004). It has been documented in human adults (e.g., Halberda,
Ly, Wilmer, Naiman, & Germine, 2012), infants (e.g., Feigenson
et al., 2004), and non-human animals (e.g., Brannon, Wusthoff,
Gallistel, & Gibbon, 2001). Several studies have indicated that hav-
ing a more precise ANS is related to better arithmetic ability (e.g.,
Halberda, Mazzocco, & Feigenson, 2008; Inglis, Attridge, Batchelor,
& Gilmore, 2011; Libertus, Feigenson, & Halberda, 2011). This find-
ing has attracted a lot of interest and suggested a causal functional
link.

In two recent studies Park and Brannon (henceforth P&B, 2013,
2014) propose that the ANS is causally related to symbolic-math
ability. The claim is supported by experimental demonstrations
of transfer of learning from a non-symbolic arithmetic, to a sym-
bolic arithmetic task in terms of a math test. P&B (2013, p. 2015)
suggested that the results of their study ‘‘. . .show that improve-
ment in an ANS-based, nonsymbolic, approximate-arithmetic
training task over multiple sessions transfers to selective improve-
ments in symbolic-math ability.” In P&B (2014) the scope was

widened by use of several tasks that measured various cognitive
components that might be responsible for a causal effect. This
strategy aimed at ‘‘improving distinct cognitive components”
(p. 189) in order to later ‘‘compare the transfer effects in exact
symbolic arithmetic performance across these training conditions”
(p. 189).

These results potentially have very important implications for
our understanding of human numerical cognition. For example,
Hyde, Khanum, and Spelke (2014, p. 93) argued that the findings
of P&B (2013) ‘‘. . .provide the strongest evidence to date of a causal
and specialized relationship between the ANS and symbolic math-
ematics.” From an applied perspective, implications are over-
whelming. As suggested by P&B (2014, p. 199) the results could
mean that approximate arithmetic training could be used in soci-
ety to ‘‘benefit young children who have yet to master the meaning
of exact number or numerical symbols”.

In both studies, the main conclusions critically depend on the
finding that performance improvements on an ANS-based task
transferred to a symbolic math task. The logic behind this would
be that if X is causally related to Y, an improvement due to training
of ability X should induce an alteration of ability Y. More
specifically, if it were possible to show that an improvement in
ANS-performance by training is accompanied by a subsequent
improvement in symbolic arithmetic performance it would suggest
a direction of causality from ANS to symbolic math ability. Here,
however, we argue that it is not possible to interpret the data pro-
vided in the two studies by P&B as showing any improvement in
non-symbolic arithmetic at all. We provide simulations suggesting
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that the trends in data that P&B interpreted as evidence for learn-
ing are the trends that one would expect to find for non-learning
observers.

2. Park and Brannon’s adaptive training method

In the approximate-arithmetic task used by P&B, participants
see two arrays of dots moving behind an occluder in sequence
(addition task) or one array of dots moving behind an occluder fol-
lowed by another array of dots appearing from behind the occluder
(subtraction task). Participants evaluate the result of the operation
(addition or subtraction) implied by the movements of the dot
arrays. The responses from participants are elicited in two ways.
On comparison trials, participants are presented with a new array
of dots and decide if the result of the previously observed opera-
tion is more ore less numerous than the new array. On match trials,
participants are presented with two new arrays and decide which
of the two match the numerosity of the result of the operation. The
difficulty of the task is determined by the ratio between the correct
answer and the alternative response option.

P&B used an adaptive method, similar to those used in psy-
chophysics (e.g., the ‘‘up-down method”) to estimate individuals’
psychophysical discrimination threshold on various tasks (see
e.g., Treutwein, 1995), to train their participants. In their imple-
mentation of the method, task difficulty is adjusted after every
20 trials according to how well the participant performed: if per-
formance on the last 20 trials was above 85% correct, the difficulty
is increased; if it was below 70% correct, the difficulty is decreased.
P&B found that task difficulty stabilized after several sessions, at a
level that was considerably harder than the initial one (Fig. 1A,
filled dots). Their conclusion from this observation was that perfor-
mance had improved, indicating learning.2

The seemingly very rapid change of stimulus difficulty as a
function of training found in all adaptive tasks in both studies
(P&B, 2013, 2014) is at first glance striking. From the first to the
second training session participants in the different conditions
seemingly master visual short-term memory tasks with a higher
span, a symbol ordering task at higher speed and an approximate
arithmetic task with stimuli much harder to discriminate. Most
impressive are maybe the effects found on Approximate Number
Comparison, which seem to suggest that performance of partici-
pants dramatically improved within 25 min of training with a
reduction of weber fractions by two thirds. This finding is surpris-
ing considering that other studies (e.g., Lindskog, Winman, & Juslin,
2013) have tried without success to obtain learning by training in
very similar tasks (see also DeWind & Brannon, 2012). P&B (2013)
suggested that a possible explanation of this discrepancy may lie in
the regulation procedure (the adaptive algorithm) ‘‘which kept the
task challenging”, thereby ‘‘inducing active engagement” (p. 2017)
within participants. While we agree that the regulation procedure
embedded in the adaptive algorithm is important per se in under-
standing the findings, we propose a different explanation than
actively engaged participants.

3. ‘‘Improvement’’ without learning

P&B interpreted the increase in difficulty level during training
(Fig. 1A, filled dots) as evidence that subjects had gotten better
at the task. However, with the adaptive method used by P&B, the

direction of convergence (harder/easier) critically depends on the
starting value chosen by the experimenter. This intuition is
demonstrated in Fig. 1A that illustrates the results of a simulation
where participants with equal performance but different starting
values take on the task used by P&B. The figure, shows that a rela-
tively easy starting value (filled squares) necessary will lead to
convergence on harder stimuli (lower values on the y-axis)
whereas a hard starting value (open squares) will bring about con-
vergence on easier stimuli (high values on the y-axis) (see full
details about simulations below).

The starting level chosen by P&B was easier than what has been
found to be readily mastered by 6-month-old human infants (ratio
1:2) (e.g., Starr, Libertus, & Brannon, 2013; Xu, 2003; Xu & Spelke,
2000; Xu, Spelke, & Goddard, 2005). Hence, it is not surprising that
they found that the adaptive method converged to more difficult
stimulus levels over time – this is what one would expect, even
for observers who do not learn. Had they used a relatively difficult
starting level, they would possibly have found – with the same
observers – a decrease of difficulty over time. Therefore, the direc-
tion of convergence cannot be used to determine whether partici-
pants got better at the task.

To establish that learning has taken place, one could instead
conduct pre- and post-tests in combination with a proper control
group. P&B (2014) did actually obtain pre- and post-tests for three
of the measures for which they claim improvement took place with
the adaptive tests; Approximate Number Precision, Visuospatial
short-term memory, and Numeral order Judgments. Albeit not
identical, these tests were very similar to the adaptive tests. Thus,
one would expect near transfer effects on these tests if the
observed pattern of performance on the adaptive tests were due
to learning. No such effects in terms of increased accuracy were
found on the pre-post comparisons (an effect was found in terms
of faster reaction times on the numerical symbol ordering task).3

In spite of this finding, the authors interpreted the changes in stim-
ulus difficulty on the adaptive tests in terms of learning.

4. A simulation of a non-learning observer

Another way to establish whether learning has taken place is to
compare the human data with data from simulations of a non-
learning observer. If the trends in the human data are very differ-
ent from those predicted for non-learning observers, then the
human data may be interpreted as evidence for learning. On the
other hand, if simulations of a non-learning observer closely mimic
the human data, then it is questionable to conclude that the human
data contain evidence for learning.

To investigate what data would look like for a non-learning
observer, we performed simulations of Experiments 1 and 2 in
P&B (2013) and Experiment 1 in P&B (2014), which we will refer
to as E1-2013, E2-2013, and E1-2014, respectively. In these simu-
lations, we used the same procedures as P&B, except that simulat-
ing an ideal observer, instead of collecting it from a human
observer, generated the response on each trial.

Following previous work (e.g., Barth et al., 2006; Dehaene,
2001; Dehaene & Changeux, 1993) we assume that numerosity
estimates are internally represented on a logarithmic scale with
constant Gaussian noise. Hence, if we denote the numerosity of a
stimulus by N, then the simulated internal representation of this
numerosity, n, is drawn from a Gaussian distribution with a mean
equal to log(N) and a standard deviation r. We further assume that
the observers use the optimal decision rule to make their choices.

2 The present paper focuses on the interpretation of performance in an approx-
imate arithmetic task. However, P&B (2013, 2014) make claims about improvement
in performance for tasks involving ‘‘numerical ordering”, ‘‘approximate number
comparison”, ‘‘short-term memory” and ‘‘symbol ordering”. The main objections
presented below of such an interpretation likewise fully apply to all these other tasks.

3 In order to try to demonstrate near transfer effects, P&B performed post hoc
contrasts pooling the approximate arithmetic and the non-symbolic numerical
comparison groups. Those analyses approached statistical significance, but did not
reach the conventional alpha level of .05.
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In the comparison task, participants are briefly presented with
two numerosities, N1 and N2, and decide if their difference,
N1–N2, is larger or smaller than a probe, N3.4 In this task, an ideal
observer responds ‘‘larger” when (n1 – n2) > n3 and smaller other-
wise. In the match task, participants are briefly presented with
two numerosities, N1 and N2, and respond which of two probes, N3

or N4, has equal numerosity to the difference between N1 and N2.
Here the ideal observer responds ‘‘N3” if |n3 – (n2 � n1)| <
|n4 – (n2 � n1)| and ‘‘N4” otherwise. The level of observation noise,
r, is the only parameter of the model. Learning in the model is deter-
mined by the time-dependence of this parameter: a learning obser-
ver is one whose value of r decreases over time, while a non-
learning observer is one whose value of r is fixed over time.

To examine if P&B’s human data are consistent with predictions
of a non-learning observer, we applied the following method. First,
we determined for each of the three experiments which value of r
provides a good match to the very last empirical data point, where
observers had reached a stable difficulty level that gives 77.5%
correct performance – the asymptotic level of performance in
P&B – (see Fig. 1A, red shaded area for an illustration). We found
that suitable values of r are .22, .20, and .23 for experiments
E1-2013, E2-2013, and E1-2014, respectively. Next, we fixed r to
these values and simulated P&B’s adaptive procedure to obtain
model predictions (see Fig. 1, green5 shaded area for an illustration)
for the entire experiments (to obtain accurate predictions, we aver-
aged the results over 10,000 runs).

P&B defined stimulus difficulty as the numerical distance, on a
log2-scale, (log-difference, LD) between the result of the operation

and the probe(s). As in the original studies our simulated partici-
pants started their training at a LD of 1.5 and completed 100 (60,
60) blocks of 20 trials each. Half of the trials were simulated as
comparison trials and half as match trials, in accordance with
P&B’s procedure. For each block we simulated participants’ perfor-
mance by randomly drawing values from the distributions corre-
sponding to the internal representation of numerosity in the
respective tasks and applying the decision rule of the ideal obser-
ver. The level of difficulty for a block was determined by perfor-
mance on the previous block as described by P&B. In accordance
with P&B’s procedure we adjusted the LDs for the comparison
and match tasks separately.

Fig. 1 illustrates the results of the simulations together with the
results reported by P&B.6 As can be seen in the figure, the averaged
model predictions closely match the averaged human data in every
experiment. Notice that although the precision parameter in the
simulations was estimated from the last data point in the respective
experiments in P&B, the simulations also closely mimics the data
with respect to the starting point, the rate of decay, and the asymp-
totic performance. This means that the trends in the data reported by
P&B are those that one would expect for a non-learning observer
and, thus, that there is no need at all to assume learning in order
to explain the pattern of data reported by P&B.

5. Discussion

We have argued that it is not possible to draw the conclusion of
an improvement in performance from data collected with an adap-
tive test procedure, and illustrated that the results of P&B look very
much as they would with non-learning participants. It is important
to note that it is possible that participants nevertheless did

Fig. 1. Results from a simulation with a non-learning, ideal observer. The ideal observer accurately predicts the empirical trend in each of the three experiments. (A)
Experiment 1 from P&B (2013). (B) Experiment 2 from P&B (2013). (C) Experiment 1 from P&B (2014). Vertical bars denote 95%-confidence intervals. We chose to report 95%-
CI rather than the standard errors reported by P&B to ease the interpretation.

4 In P&B participants also perform an addition task, which make the same
predictions with respect to performance as the subtraction task formulated here and
which is easily derived from the subtraction case.

5 For interpretation of color in Fig. 1, the reader is referred to the web version of
this article. 6 Results from P&B were extracted with WebPlotDigitizer (Rohatgi, 2014).
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improve and that a real improvement in quantity manipulation
could occur without any accompanying improvement in the per-
formance measures at all. However, as our demonstration shows,
there is nothing in the data reported by P&B that suggests that
an improvement took place. The strong causality interpretation
made by P&B (2014) in terms of a change through an improvement
in ‘‘nonverbal numerical quantity manipulation” (p. 188) may nev-
ertheless still be correct. It is of course also possible that an
improvement may have occurred on an underlying mechanism
that is not tapped by the task performance measure per se, such
as for example storing arrays in working memory.

What are the implications for the causality interpretation when
learning has not been demonstrated? The possibility that the
results have causes that do not depend on a lasting improvement
by training of the ANS (be it acuity, quantity manipulation or any
other aspect of this system) must be considered. The question is
whether or not the transfer effect to symbolic math occurred due
to learning caused by training or due to some other more superfi-
cial transfer effect independent of learning. It is possible that the
mere engaging in non-symbolic arithmetic in absence of any kind
of improvement can enhance symbolic arithmetic performance.
This is suggested by the results of Hyde et al. (2014) who found
effects on children’s symbolic math performance after a mere 60
practice trials of approximate arithmetic in the absence of non-
symbolic task improvement. It seems implausible that such a neg-
ligible amount of practice can have made a change in the effective-
ness with which children manipulate quantities at all. The authors
speculated that this effect was due to common cognitive mecha-
nisms engaged in these tasks. It may for example be the case that
approximate numeric processes ‘‘warm up” relevant neurological
areas, and that this ‘‘priming” is transferred to the symbolic arith-
metic test. This explanation may seem less plausible considering
that the post-test math tests in P&B (2013, 2014) took place on a
different session than the last training session 1-2 days later. How-
ever, priming effects may be very persistent. For example, Mitchell
(2006) found priming effects after 17 years for a material pre-
sented only three times at the original occasion.

A second possibility is that the approximate arithmetic condi-
tion promotes a non-specific response speed increase. It is not
far-fetched to imagine that for example participants in the proba-
bly highly cognitively demanding approximate mental arithmetic
task, in order to be able to cope adopt a strategy of responding
rapidly after performing the mental arithmetic out of necessity,
before the stimuli is displaced in short-term memory. Such an
urgency in responding may then be transferred to post-training
tasks, and show up in the arithmetic task that depends heavily
on fast responding. Effects of non-symbolic arithmetic training
were specific to the arithmetic test. However, guessing was pun-
ished on the vocabulary tasks and the other accuracy tests con-
sisted of a non-speeded fixed set of items. This fact could have
masked response speed effects on those tasks. Consistent with this
hypothesis, in analyses of the math task result, P&B (2014) indeed
found an increment in the number of math problems attempted,
but not for the proportion of these problems solved correctly.
Something that may speak against this hypothesis is that the
approximate arithmetic group did not exhibit the shortest
response times on the numeral order judgment task at posttest.
However, there are several important and relevant differences
between the numeral order judgment test and the math test. For
example, the numeral order judgment test is not timed, but self-
paced, with no incentive for participants to respond rapidly. All
participants receive a fixed amount of trials irrespective of how
long they take to complete the task. In the math test on the other
hand, participants finish as many problems as they can within a
given time limit, and this determines performance. With this task,
faster participants will perform better by just moving from one

problem to the next swiftly, something which is not the case for
the former task. An item-to-item speed up would thus not show
up as an improvement in the numeral order judgment test, which
merely measured reaction times after stimulus presentation. Con-
versely, whereas it might seem plausible that the numerical sym-
bol ordering condition might a priori be especially susceptible to
induce a sense of urgency in participants, at the same time this task
does not involve discrete items, but a continuous stream of stimuli.
In this sense, even if the task is speeded, it might mot induce a
sense of urgency because it involves passive reacting to stimuli
and unlike the math test no discrete item-to-item progression.

Apparently participants in the different conditions in P&B
(2014) received different amounts of rest after a training session
depending on the length of the training itself.7 In the approximate
arithmetic condition stimulus presentation takes more than four
times as long as it does in the approximate number comparison task.
It is quite possible that subtle experimental confounds like this
induce different degrees of sense of urgency over conditions so that
for example those who received longer breaks felt less sense of
urgency than those with briefer periods of rest.

This general speed increase hypothesis8 may quite straightfor-
wardly be empirically falsified by subjecting participants to some
other timed tasks in which performance heavily rests on the speed
at which the questions are answered. Future research will have to
address the nature of these effects, and should test for general speed
effects. If the demonstrated effects in the end are found to be an
effect due to common cognitive mechanisms they are undoubtedly
interesting from a theoretical perspective. A response speed up strat-
egy is theoretically less interesting. However, both of these alterna-
tive explanations to Park and Brannon’s hypothesis suggest that
effects are likely to be transient and situation-specific. Thus, it is
unfortunately quite possible that these findings may convey little
or no possibility for applied ‘‘interventions for math educators”.
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a b s t r a c t

In our previous studies, we demonstrated that repeated training on an approximate arithmetic task
selectively improves symbolic arithmetic performance (Park & Brannon, 2013, 2014). We proposed that
mental manipulation of quantity is the common cognitive component between approximate arithmetic
and symbolic arithmetic, driving the causal relationship between the two. In a commentary to our work,
Lindskog and Winman argue that there is no evidence of performance improvement during approximate
arithmetic training and that this challenges the proposed causal relationship between approximate
arithmetic and symbolic arithmetic. Here, we argue that causality in cognitive training experiments is
interpreted from the selectivity of transfer effects and does not hinge upon improved performance in
the training task. This is because changes in the unobservable cognitive elements underlying the transfer
effect may not be observable from performance measures in the training task. We also question the valid-
ity of Lindskog and Winman’s simulation approach for testing for a training effect, given that simulations
require a valid and sufficient model of a decision process, which is often difficult to achieve. Finally we
provide an empirical approach to testing the training effects in adaptive training. Our analysis reveals
new evidence that approximate arithmetic performance improved over the course of training in Park
and Brannon (2014). We maintain that our data supports the conclusion that approximate arithmetic
training leads to improvement in symbolic arithmetic driven by the common cognitive component of
mental quantity manipulation.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Imagine yourself in a six-day weight-training program. On the
first day, you start squatting 80 lb. Then, you increase the weight
adaptively on a daily basis until the last day when you squat
150 lb. Prior to this weight-training program, you could lift up to
200 lb; therefore, technically your weight-lifting performance did
not improve. Nevertheless, after the six days of squatting, you find
that you are able to sprint faster than you previously could!

Whether your squatting performance improved or not has little
to do with demonstrating the causal relationship between squat-
ting and sprinting and its translational significance (Chelly et al.,
2009; McBride et al., 2009). The essence of that causal relationship
is not between squatting and sprinting but between strengthening
leg muscles and sprinting.

Lindskog and Winman’s (2016) commentary on our previous
paper (Park & Brannon, 2014) claim that there is no evidence of
performance improvement1 in our non-symbolic approximate
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0010-0277/� 2016 Elsevier B.V. All rights reserved.
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1 Note that Lindskog and Winman actually argue that there is ‘‘no evidence of
learning.” However, they conflate performance improvement in the observable
measures with possible changes in unobserved cognitive elements due to training
(see Section 2). We suggest to reserve the term learning for the latter, and that it is
more accurate to use the term performance improvement in this case.

Discussion / Cognition 150 (2016) 243–251 247

http://refhub.elsevier.com/S0010-0277(16)30005-1/h0050
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0050
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0050
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0055
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0055
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0055
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0060
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0060
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0060
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0065
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0065
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0070
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0070
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0070
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0070
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0075
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0075
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0075
http://dx.doi.org/10.5281/zendo.10532
http://dx.doi.org/10.5281/zendo.10532
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0085
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0085
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0090
http://refhub.elsevier.com/S0010-0277(16)30005-1/h0090
http://refhub.elsevier.com/S0010-0277(16)30005-1/h9000
http://refhub.elsevier.com/S0010-0277(16)30005-1/h9000
http://refhub.elsevier.com/S0010-0277(16)30005-1/h9005
http://refhub.elsevier.com/S0010-0277(16)30005-1/h9005
http://refhub.elsevier.com/S0010-0277(16)30005-1/h9010
http://refhub.elsevier.com/S0010-0277(16)30005-1/h9010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2016.01.005&domain=pdf
http://dx.doi.org/10.1016/j.cognition.2016.02.012
http://refhub.elsevier.com/S0010-0277(16)30005-1/h9010
mailto:joonkoo@umass.edu

	No evidence of learning in non-symbolic numerical tasks – A comment on Park and Brannon (2014)
	1 Introduction
	2 Park and Brannon’s adaptive training method
	3 “Improvement''&!rdquo; without learning
	4 A simulation of a non-learning observer
	5 Discussion
	Acknowledgments
	References
	1 Introduction


