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Where did that come from?—Identifying the source
of a sample

Marcus Lindskog

Department of Psychology, Uppsala University, Uppsala, Sweden

People’s ability to summarize their knowledge of an observed numerical variable has been extensively
studied. However, many real-life situations require people to go beyond summary statistics and infer
which process or distribution has generated a sample. The present study investigates the extent to
which people can make such inferences when the experienced variable is continuous and when they
have had previous experience with instances of the variable. It also tests specific predictions derived
from three possible cognitive processes of how inferences about a generating distribution are made.
The results indicate that participants are efficient and flexible intuitive statisticians, requiring only as
little as four observations in a sample to successfully infer which distribution it came from. Further,
the results indicate that the cognitive process supporting the inference uses statistical properties of
both an experienced distribution and a presented test sample, as suggested by the Naïve Sampling
Model (NSM).

Keywords: Intuitive statistics; Sample; Inference; Naïve intuitive statistician; Naïve sampling model

The information that people experience in everyday
life is seldom complete, and often they have to settle
for a small sample of data as a basis for judgements
and decisions. The present study investigates the
cognitive process underlying how people make infer-
ences from sparse data within the framework of the
naïve intuitive statistician (Fiedler, 2000; Fiedler &
Juslin, 2006; Juslin, Winman, & Hansson, 2007;
Lindskog, Winman, & Juslin, 2013a, 2013b).

Intuitive statistical judgements

Research investigating people’s ability to estimate
statistical properties of experienced data has
mainly focused on the accuracy of estimates of

descriptive properties, such as central tendency
and variability. The general conclusion from
research concerned with inductive inference in con-
trolled laboratory settings has been that while esti-
mates of some properties (e.g., central tendency) are
accurate, estimates of others (e.g., variability) are
consistently biased (Kareev, Arnon, & Horwitz-
Zeliger, 2002; Lovie, 1978; Lovie & Lovie, 1976;
Pollard, 1984). Further, several investigations con-
cerned with general knowledge acquired outside of
the laboratory have suggested that judgements of
statistical properties are the result of fallible heuris-
tics and prone to biases (Gilovich, Griffin, &
Kahneman, 2002; Kahneman, Slovic, & Tversky,
1982; Tversky & Kahneman, 1974).
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People’s knowledge of higher order properties,
like distribution shape, has been studied using vari-
ables supposedly encountered in everyday life (Fox&
Thornton, 1993; Griffiths & Tenenbaum, 2006;
Jako & Murphy, 1990; Lichtenstein, Slovic,
Fischhoff, Layman, & Combs, 1978; Linville,
Fischer, & Salovey, 1989; Nisbett, Krantz, Jepson,
& Kunda, 1983; Nisbett & Kunda, 1985) and vari-
ables experienced on a trial-by-trial basis in con-
trolled laboratory settings (Griffiths &
Tenenbaum, 2011; Lindskog et al., 2013a, 2013b).
The results are mixed. Some studies indicate
remarkably accurate knowledge (e.g., Griffiths &
Tenenbaum, 2006), whereas others suggest that
people are biased by external information in the
environment (e.g., Galesic, Olsson, & Rieskamp,
2012; Lichtenstein et al., 1978), by their own
location in the distribution (Fiedler, 2000; Nisbett
& Kunda, 1985), or by inherently biased estimators
of the underlying distribution (Lindskog et al.,
2013b). Further, even though people seem to have
enough knowledge of distributions to make accurate
predictions of future events (Griffiths &
Tenenbaum, 2011), the accuracy of predictions are
influenced by the shape of the underlying distri-
bution (Lindskog et al., 2013b).

Judgements and decisions informed
by samples

The research presented above indicates that people,
at least under some conditions and for some prop-
erties, are equipped with an ability to summarize
their knowledge of numerical values. However,
many tasks require people to go beyond summary
statistics and use the information in a sample to
infer something about the underlying distribution.
Indeed, several accounts of human cognition
assume an internal sampling of information from
memory prior to making a judgement or decision
(e.g., Busemeyer, Myung, & McDaniel, 1993;
Dougherty, Gettys, & Ogden, 1999; Dougherty
& Hunter, 2003; Fiedler, 2000; Fiedler & Juslin,
2006; Gaissmaier, Schooler, & Rieskamp, 2006;
Hansson, Rönnlund, Juslin, & Nilsson, 2008;
Kahneman & Miller, 1986; Kareev et al., 2002;
Lindskog et al., 2013b; Thomas, Dougherty,

Sprenger, & Harbison, 2008). The naïve sampling
model (NSM; Juslin et al., 2007; Lindskog et al.,
2013b), for example, suggests that people use prop-
erties of a small internally generated sample as a
proxy for the properties of the population from
which the sample originates. More specifically, it
has been shown that both judgements of confidence
intervals (Juslin et al., 2007) and point estimates for
unknown objects (Lindskog et al., 2013b) are
informed by the statistical properties of a small
internally generated sample. Similarly, in decision
by sampling theory (Stewart, Chater, & Brown,
2006) the value of a target is determined by its rela-
tive rank in a small sample from memory. It is
assumed that the sample from memory reflects
both a distribution of values in a specific context
and the underlying real-world distribution
(Stewart et al., 2006). Thus, using the relative
rank of a target within a series of internally gener-
ated samples will give information about where
the target is positioned in the overall distribution
and thereby its value. The internally generated
samples thereby convey information about the stat-
istical properties of the underlying distribution.
Similarly, Dougherty and Hunter (2003) showed
that when participants were to estimate the likeli-
hood that a particular menu item would be
ordered, their judgements were made relative to
alternatives retrieved from long-term memory.
Again, the alternatives retrieved from memory
give information about the underlying distribution,
which, in this case, can be used when judging like-
lihood. Finally, recent Bayesian accounts of human
cognition have suggested that prior distributions
are formed by drawing a limited number of
samples from memory (Vul, Goodman, Griffiths,
& Tenenbaum, 2009).

The cognitive processes that people use are
sometimes considered to be adaptations to the
environment in which they operate (e.g.,
Anderson, 1991; Brunswik, 1955). The obser-
vation that people in various tasks infer population
properties from internally generated samples may
therefore suggest that this process has evolved
because it works well in several situations. This
might, in turn, indicate that using the information
in a sample to infer population properties is
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something that people can do with reasonable accu-
racy. Studies investigating whether this is the case,
however, report mixed results. Under some con-
ditions, both infants (Gweon, Tenenbaum, &
Schulz, 2010; Xu & Denison, 2009; Xu &
Garcia, 2008) and adults (e.g., Evans & Pollard,
1985) show an ability to infer population properties
from samples and even seem to take complex fea-
tures of the sampling process into account
(Gweon et al., 2010). However, a substantial
body of research suggests that people are naïve
with respect to several aspects of the processes
that shape samples. For example, even though
people under some conditions acknowledge that
larger samples contain more information than
smaller samples (Bar-Hillel, 1979; Chesney &
Obrecht, 2012; Evans & Dusoir, 1977; Obrecht,
Chapman, & Gelman, 2007; Obrecht &
Chesney, 2013; Sedlmeier, 1998; Sedlmeier &
Gigerenzer, 1997), they do not always integrate
this information in their decisions (Evans &
Pollard, 1985; Kahneman & Tversky, 1972;
Obrecht et al., 2007). In addition, people seem to
be naïve with respect to the conclusions that can
be drawn from a sample (Fiedler, 2000; Fiedler &
Juslin, 2006; Kareev et al., 2002; Lindskog et al.,
2013b). Failing to appropriately evaluate the repre-
sentativeness of a sample, for example, can lead to a
number of apparent judgement biases (e.g., Fiedler,
2000; Fiedler & Juslin, 2006; Kareev et al., 2002;
Lindskog et al., 2013b).

Features of inference tasks
Many of the studies concerned with people’s ability
to make inferences from small samples share three
task features (see e.g., Beach, Wise, & Barclay,
1970; Griffin & Tversky, 1992; Phillips &
Edwards, 1966). First, they predominantly use a
binomial distribution. For example, a sample of
red and white chips might be drawn from an urn
with an unknown proportion of red and white
chips, and participants are required to infer these
unknown proportions. Even though the binomial
case is interesting, most data sets that people experi-
ence in everyday life come from continuous distri-
butions. Second, first-hand experience with the
underlying distribution is generally withheld from

participants. That is, prior to being presented with
information about the sample, they have not been
shown any instances from the distribution. While
situations where little or nothing is known about
the underlying distribution are not uncommon,
people often have some prior knowledge or experi-
ence of the underlying distribution before the
sample is presented. Finally, the sample is often pre-
sented to participants in a written summary descrip-
tion rather than by displaying all individual values of
the sample. That is, participants might receive the
information that a sample contains four red and
three white chips in a written summary statement
rather than observing each chip in the sample.
Information in everyday life is, however, seldom
experienced in descriptive summaries of data, and
decisions based on description have been shown to
deviate from equivalent decisions based on experi-
ence (e.g., Hertwig, Barron, Weber, & Erev, 2004;
Hertwig & Pleskac, 2010). In addition to these fea-
tures, the task can be set up either as a yes/no recog-
nition task where participants are asked to infer
whether a sample has been drawn from a distribution
or as a comparison task where the task is to infer
which of two, or more, samples has been drawn
from a distribution.

To address the possible limitations of previous
research, the present study uses task features that
are more similar to how people are expected to
experience data in real-world situations. This is
done by using a continuous variable, by allowing
participants to experience several values from the
underlying distribution prior to making inferences,
and by letting participants make inferences from
samples with all observations in the sample present.

The naïve sampling model

Research evaluating people’s ability to act as intui-
tive statisticians has primarily emphasized the
degree to which judgements conform to the norma-
tive rules of statistics and probability theory, while
largely disregarding the nature of the cognitive pro-
cesses that lead up to a judgement. Recently,
however, a series of related studies have outlined a
framework for intuitive statistical judgements
where people are considered naïve intuitive
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statisticians (Fiedler, 2000; Fiedler & Juslin, 2006;
Juslin et al., 2007; Lindskog et al., 2013a, 2013b).
Within this framework, the NSM (Juslin et al.,
2007) has been proposed as a process model for
how some intuitive statistical judgements are
formed. The NSM suggests that the generic
process that people use to realize their knowledge
of an experienced variable is post hoc sampling
from long-term memory (LTM; Juslin et al.,
2007). That is, intuitive statistical judgements are
computed on a small sample of observations
retrieved from memory at the time of judgement
(Juslin et al., 2007; Lindskog et al., 2013a,
2013b). As a consequence, judgements will be influ-
enced by constraints on the cognitive processes. For
example, the samples of data retrieved frommemory
will have to be of a size that can be activated within
working memory constraints. Further, there is
extensive support for the notion that controlled jud-
gements are sequential and additive (Anderson,
1991; Hogarth & Einhorn, 1992; Juslin, Karlsson,
& Olsson, 2008; Juslin, Nilsson, Winman, &
Lindskog, 2011; Nilsson, Winman, Juslin, &
Hansson, 2009). This means that information in
the environment is integrated by considering one
piece of information at a time and that the predomi-
nant operation used to integrate previous knowledge
with new data is additive in its nature. Thus, the
information integration of a naïve intuitive statis-
tician is likely to be constrained by the sequential
real-time properties of a controlled judgement
process (Juslin et al., 2007). Further, to create
estimates of statistical properties, people will tend
to use properties of the retrieved sample as a proxy
for population properties. As is known from
introductory statistics, some sample properties
(e.g., mean and proportion) are unbiased estimators
of population properties while others (e.g., variance
and coverage) are not. Accordingly, which has been
shown repeatedly in previous research (e.g., Pollard,
1984), people’s estimates of the former will be more
accurate than those of the latter.

The cognitive process of inference

Consider the following example to appreciate the
type of inference task that the participants in the

studies reported below are asked to do. Imagine
working in a factory with two production lines (A
and B), both producing the same type of chocolate
bar differing only in size. Working at Line A you
only experience bars from that line and have no
experience of those from the other. While your
line (A) is set up to satisfy the European market
and produces bars the size of which follows a
bimodal distribution with either large or small
bars, the other (B) is set up to satisfy the
American market and produces bars the size of
which follows a unimodal distribution. The bars
from each line are put in boxes of five bars, labelled
with Europe or USA. Now, one day the labelling
machine breaks down, and, equipped only with
the sample of bars in each box and experience
from your work at Line A, you need to decide
whether a particular box should be shipped to
Europe or the US. Thus, your task is to infer,
equipped with the knowledge about the distri-
bution of bars that Line A generates, which of
the two processes (Line A or Line B) has generated
the sample in a particular box.

People could respond to this inference task by
means of one of at least three different, possible
cognitive processes. The first process assumes
that experienced values are stored in and retrieved
from long-term memory and are compared to the
concrete and specific values in a test sample. The
other two processes are somewhat more sophisti-
cated and assume that statistical properties from
both the experienced distribution and the test
sample are induced and used in the decision.
The inference task, and the associated processes
outlined below, all include three sets of values.
The objective distribution (OD) describes the set
of all values of a given variable. During learning,
participants experience a subset of values, the
experienced distribution (ED), from the OD. It is
possible that the ED is either a representative
or a biased subset of the OD. However, in the
experiments reported below, the ED presented
to participants is always representative of the
OD. Finally, during test participants are pre-
sented with a test sample (TS) and are asked to
infer whether the TS comes from the same OD
as the ED.
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Memory inference
A first possibility is that people make an inference
by matching values in the test sample against
values in the experienced distribution. A memory
inference stores the values from the experienced
distribution in long-term memory in the form of
a subjective distribution (SUD). The SUD could
possibly contain all the values of the ED but it is
reasonable to assume that only a subset of values
of the ED will actually be remembered. A later
inference will be made by matching the values in
the TS with the values in the SUD. The process
of inferences would thus have participants decide
whether a test sample has been drawn from the
OD based on the proportion of matches between
the values in the SUD and the values in the TS.
For example, a worker at the chocolate factory pre-
sented with two boxes containing 10 chocolate bars
each would count the proportion of bars in each box
that are equal in size to the sizes stored in memory
and conclude that the box with the highest pro-
portion of matches is the one originating from
the objective distribution. That is, a sufficient pro-
portion of matches would indicate that the OD has
generated the TS.

More formally, let S denote the set of values in
the OD, and let ss denote the subset of values
from S that have been stored in LTM during
exposure to S (i.e., the SUD). Further, let st be a
set of values (TS) that potentially may have been
drawn from the same distribution as S. To infer
whether st has been drawn from the same distri-
bution as S, the memory inference compares each
value k of ss to each value j of st and calculates the
proportion of matches. Let M(ss,k : st,j) denote a
matching function, which takes value 1 if ss,k= st,j
and 0 otherwise, and let nst be the number of
values in st. Then PM = ∑

k

∑
j M(ss,k : st,j )/nst

is the proportion of matches. In a yes/no recog-
nition task, the memory inference will have partici-
pants conclude that st has been drawn from the
same distribution as S when PM. θ, where θ is
some critical proportion of matches. In a compari-
son task with two samples, as in the experiments
reported below, the memory inference will have
participants conclude that sample s1 rather than
sample s2 has been drawn from the same

distribution as S if PM1. PM2—that is, if the
proportion of matches is larger for sample s1 than
for sample s2.

The memory inference would be inefficient if
the test sample includes values from the OD not
previously experienced or if any noise is added to
the values stored in memory during exposure.
The two processes described next are more flexible
with respect to these situations in that they both
derive estimates of statistical properties of both
the experienced distribution and the test sample
rather than rely on the exact matching of values.

Inference from a large-sample representation
A second possibility is that an inference is made
from a precomputed representation based on a
large sample of the experienced variable.
Precomputed large-sample representations could
be generated from explicit attempts from a partici-
pant to abstract statistical properties during
exposure (i.e., online) to the variable as when
someone is keeping and updating a running mean
as new observations are made. The representation
could also, hypothetically, arise from corresponding
preconscious and automatic computations (Zacks
& Hasher, 2002). When presented with a test
sample and asked to make an inference, people
would have to base their judgement on the statisti-
cal properties of the large-sample representation
because little or no information about the specific
values is retained. Previous research indicates that
central tendency and variability (e.g., Pollard,
1984) are properties that could potentially be
included in the inference.

Formally, let S be the set of values of the OD,
and let se be the values of the ED—that is, the
subset of values from S that the participants experi-
ence. The values of se will serve as the basis for esti-
mating the statistical properties of S. During
exposure, a participant would engage in an online
estimation of, for example, the mean (μS) and stan-
dard deviation (σS) of S by updating a running
mean (μse) and standard deviation (σse) from the
values of se as each new value is presented. The
majority of the individual values of se will be disre-
garded while the statistical estimates will be stored
in LTM. At the time of judgement the properties
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of se will be compared to those of the test sample. In
the case of a yes/no recognition task including one
sample (s1), it will be inferred that this sample
comes from S if SP(se, s1), ε where SP(sx, sy) is a
function that calculates the deviation between the
statistical properties of two sets of values (sx and
sy) and is given by

SP(sx, sy) = u
msx − msy

∣
∣
∣

∣
∣
∣

msx

+ (1− u) ssx − ssy

∣
∣

∣
∣

ssx
, (1)

with 0≤ θ≤ 1. The division by μsx and σsx in the
first and second terms, respectively, of Equation 1
is to ensure that both terms will be on equivalent
similarity scales. In the case of a comparison task
with two samples (s1 and s2), the inference that s1
rather than s2 has been drawn from S will be
made if SP (se, s1), SP (se, s2).

According to the large-sample account, our cho-
colate factory worker would not store the size of
each and every one of the bars passing by on Line
A in memory. Rather, he or she would keep esti-
mates of the mean size and the variability of the
size in memory. As each new bar passes by, these
estimates would be updated. To infer whether a
box has been generated by Line A, our worker
would compare the statistical properties stored in
memory with those of the box. A small deviation
for the compared properties would suggest that
the box comes from Line A.

Inference from a small-sample representation
Finally, a third possibility follows from the NSM.
The NSM suggests that intuitive statistical judge-
ments are based on a small sample of values in a
memory sample (MS), the properties of which are
considered to be proxies for the properties of the
population distribution. In principle, it is possible
that all of the values of the SUD are retrieved at
the time of judgement. However, we follow
research suggesting that online judgements are
constrained by short-term memory (e.g.,
Dougherty & Hunter, 2003; Gaissmaier et al.,
2006; Hansson et al., 2008; Kareev et al., 2002;

Stewart et al., 2006) and therefore that the MS
will contain approximately 4+ 2 observations
(Cowan, 2000). Thus, in contrast to a large-
sample representation, inferences from a small-
sample representation use the properties of the
MS rather than those of the ED when performing
the inference. In all other aspects the inferences are
equivalent.

The process could formally be described as
follows. Let S and ss denote the set of values in
the OD and SUD, respectively. Further, let sm be
a sample of approximately four values drawn ran-
domly from the ss. In the case of yes/no recognition
task with one sample (s1), it will be inferred that s1
has been drawn from S if SP(sm, s1), ε (see
Equation 1). Further, in the two-sample (s1 and
s2) comparison task case it will be inferred that s1
rather than s2 has been drawn from S if SP (sm,
s1), SP (sm, s2).

Predictions

The following section derives specific predictions if
one or the other of the above suggested processes
are used to solve the inference task. While the
two latter accounts suggest that people use statisti-
cal properties of the test sample to infer which dis-
tribution it has been drawn from, the memory
inference does not. As such, the memory inference
will be sensitive to whether or not the values in the
test samples have been previously experienced or
not, and there should be a distinct difference in per-
formance depending on whether the data points are
new or old, with better performance for old than for
new data points. In contrast, if judgements are
based on statistical properties of the test samples,
all other things equal, performance is predicted to
be equally good when the test samples contain
new as when they contain old data points from
the OD. Another prediction from the memory
inference model is that performance will be inde-
pendent of the shape of the distribution, or of the
statistical properties of the distribution, from
which the values are drawn.

The statistical properties of the test sample will
reflect the “true” distribution of values with more
or less precision. This precision is denoted by the
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statistical term of standard error. Standard error is
determined by the variance of the distribution and
the size of the sample. Samples drawn from popu-
lations with low variance (e.g., unimodal rather
than bimodal) and consisting of a large number of
observations will have smaller standard errors
than others. In addition to the standard error of
the test sample, participants that rely on a small-
sample representation will suffer from a second
source of error; the sample drawn from long-term
memory will reflect the total pool of values stored
in memory with a certain precision, also deter-
mined by a standard error.

In the small-sample account, the properties
(mean and standard deviation, see Equation 1) of
the MS and the TS are compared. From this com-
parison follows the general prediction that per-
formance will increase as the standard errors of
the MS and TS decrease. This occurs because
when standard errors are small the difference
between the sample means and sample standard
deviation in the MS and TS will be small, if they
are drawn from the same distribution.

Previous research has indicated that statistical
judgements based on a small-sample representation
are more accurate for variables with a unimodal
than with a bimodal distribution (Lindskog et al.,
2013a, 2013b). However, this has not been tested
for the task of inferring the generating distribution
of a sample. Because, other things equal, samples
from a unimodal distribution have smaller standard
errors than those from a bimodal distribution, a
small-sample account predicts a higher proportion
of correct responses when the underlying distri-
bution is unimodal than when it is bimodal.
Notably, this should occur even when the two dis-
tributions are equally well learnt. Because a large-
sample representation is similar to a small-sample
representation with a large MS, the same unimo-
dal–bimodal difference is predicted in the case of
inferences being based on large-sample represen-
tations. However, the effect of distribution should
be smaller than in the large-sample case because
it is only the standard errors of the TS that are
affected by the underlying distribution. In contrast,
there should be no such differences between the
two distributions for a memory inference.

In general, larger samples include more infor-
mation than smaller samples. It is therefore reason-
able to expect that people should find it easier to
solve the inference task if the test samples are
large rather than small (i.e., contain many as
opposed to few data points). In the large-sample
and small-sample case, this occurs because the stan-
dard errors of the TS become smaller as sample size
increases. Notice that because sample proportion is
an unbiased estimator of population proportion
there should be no effect of sample size if partici-
pants use a memory inference.

The three previous predictions are able to differ-
entiate between the memory inference and the two
accounts based on sample representation. They do
not, however, differentiate the large-sample and
small-sample account. Under certain conditions,
the two-sample accounts do, however, predict
qualitatively different patterns in performance.
Figure 1 illustrates the predicted performance of
the two accounts, derived from computer simu-
lations, under a set of conditions including those
used in the experiments reported below [distri-
butions: unimodal: beta(5, 5) and bimodal: beta
(.5, .5); sample sizes: small: 5 or 4 and large: 10
or 8]. Details of the simulations are presented in
the Appendix. The figure illustrates both the

Figure 1. Predicted proportion correct in the four experimental

conditions [unimodal (uni) or bimodal (bim) distribution with

large (L) or small (S) sample sizes] under three different sets of

parameter values for the underlying distributions [beta(8, 8) vs.

beta(.2, .2); beta(5, 5) vs. beta(.5, .5); beta(3, 3) vs. beta(.7,

.7)]. Dashed lines depict predicted performance for the large-

sample (LS) account while solid lines depict predicted performance

for the small-sample (SS) account.
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effects of distribution and sample size predicted for
the large-sample and small-sample accounts. More
importantly, the figure illustrates a qualitative
difference in the predicted pattern of performance
in the unimodal–small and bimodal–large con-
ditions. While the small sample account predicts
better performance in the unimodal–small than
the bimodal–large condition, the large-sample
account makes the opposite prediction. The differ-
ent patterns occur because a change in the variabil-
ity of the underlying distribution has less impact on
a large-sample than a small-sample representation
and can therefore be compensated by an increase
in sample size.

THE PRESENT STUDY

The aim of the present study was to address three
main questions. First, to what extent are people
able to solve an inference task that uses a continu-
ous variable, allows them to experience values from
the objective distribution, and allows them to
experience all values in the sample? Second, do
people use the statistical properties of the objective
distribution and the test samples to solve the infer-
ence task or are their judgements based on a
memory inference? Finally, does the possible use
of statistical properties involve a large sample or a
small sample (similar to the NSM) representation?

In Experiments 1 and 2, participants learned the
distribution of a single variable from trial-by-trial
experience. They were later asked to identify
which of two test samples had been drawn from
the experienced distribution. Experiment 1 was
designed to investigate the influence of sample
size and the shape of the underlying distribution
on the accuracy of inference. By allowing both old
and new values in the test samples used in
Experiment 2, this experiment investigated the
role of memory processes in solving the inference
task.

In Experiment 3, participants learned the distri-
butions of two variables simultaneously. Later, they
were asked to identify which of two test samples
came from either of the two variables. Thus,
Experiment 3 investigated how the ability to draw

inferences from samples is influenced by the pres-
ence of multiple distributions.

EXPERIMENT 1: SAMPLE SIZE AND
DISTRIBUTION

During learning, participants observed 100 consu-
mer ratings for a fictitious product with either a
bimodal or a unimodal distribution of the ratings.
They were later presented with two test samples
of consumer ratings, both containing either 5 or
10 values, and were asked to decide which of the
two had been generated by the same distribution
seen during learning. Distribution (unimodal/
bimodal) was manipulated between subjects and
sample size (5/10) within subjects. The experiment
was thus designed to investigate the influence of
sample size and the shape of the objective distri-
bution on performance in the inference task. To
estimate participants’ knowledge of the objective
distribution, they also reproduced the distribution
by means of frequency estimates and gave estimates
of central tendency and variability. Finally, to
control for proficiency to handle numbers and an
ability to remember numbers, measures of numer-
acy and long-term memory for numbers were
collected.

Method

Participants
Participants were 36 undergraduate students (15
male and 21 female) from Uppsala University
(M= 22.8 years, SD= 3.7). They received a
movie voucher or course credits as compensation
for participating in the study.

Materials and procedure
The computerized task consisted of a learning phase
and a test phase. On each trial of the learning phase,
participants observed a numerical value between 1
and 1000 described as a consumer rating of a ficti-
tious product. The cover story informed partici-
pants that the ratings came from a market survey
using a representative sample, and participants
were instructed to observe the ratings carefully in
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order to be able to give a first advisory opinion on
the outcome of the market survey. Two sets of
100 unique values, drawn from a symmetric unim-
odal distribution [beta distribution with α= β= 5,
beta(5, 5)] and a symmetric bimodal distribution
[beta(.5, .5)] and transformed to the range [1,
1000], defined the unimodal and bimodal con-
ditions, respectively. The properties of the two
sets are shown in Table 1. Each of the 100 values
was observed once in an individually randomized
order during learning and was presented together
with a fictitious consumer identification tag. The
presentation was self-paced, but each value
remained on the screen for a minimum of 2 s
before participants could proceed to the next trial.

In the test phase, participants completed a
sample identification task and a production task,
the order of which was counterbalanced, and gave
estimates of descriptive statistics (central tendency
and variability). Finally, after the main experiment,
participants performed a long-term memory test for
numbers and completed a questionnaire measuring
numeracy.

Sample identification. On each of the 40 trials of the
sample identification task, participants were pre-
sented with two test samples (Sample 1 and
Sample 2) of consumer ratings and were to decide
which of the two came from the distribution of
values experienced during learning. The two test
samples on each trial had an equal number of
values; half of the trials had 10 values in each
sample, and half had 5. One of the samples
(target sample) consisted of values randomly

drawn from the set of values seen during learning,
while the other (distractor sample) included values
drawn from the set of values not seen during learn-
ing. That is, a participant in the unimodal con-
dition would have target samples drawn from the
unimodal set and distractor samples drawn from
the bimodal set, while a participant in the
bimodal condition would have the opposite. The
presentation of the test samples is illustrated in
Figure 2. Which of the two test samples (Sample
1 or 2) that was the target and distractor, respect-
ively, was randomized for each trial. Participants
made their decision by pressing the button
located directly below the chosen sample.

Prior to the task, we took care to explain how the
instructions should be interpreted. If a test sample
came from the experienced distribution, partici-
pants were told that it should have the same

Table 1. Characteristics in terms of central tendency, range, and variability of the sets of values used in the three experiments

Experiment Distribution Sample type

Central tendency Range Variability

Mean Median Min Max SD MAD

Exp. 1 and 3 Bimodal 498 500 3 997 345 311

Unimodal 500 502 122 883 160 130

Exp. 2 Bimodal Old 502 506 7 991 351 325

Bimodal New 500 468 14 996 352 325

Unimodal Old 499 499 35 1000 210 173

Unimodal New 499 500 13 24 213 175

Note: MAD = mean absolute deviation.

Figure 2. Illustration of the presentation of the two test samples in

the sample identification task.
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properties as the experienced distribution but that
this might occur without any one single value
being recognized. Conversely, participants were
instructed that recognizing one or more values
would not necessarily be sufficient for concluding
that the sample came from the same distribution.

Production. In the production task, participants
were given 10 equally wide intervals on the range
[1, 1000] (1–100, 101–200, . . . 901–1000) and
were to state how many of the 100 consumer
ratings from the learning phase fell into each inter-
val. Frequencies were required to sum to 100.

Descriptive statistics. Participants gave estimates of
central tendency (mean and median) and variability
(mean absolute deviation) for the consumer ratings.
The estimates were preceded by a brief definition of
the measures in terms of an explicit exemplification
of its calculation (e.g., “The mean for a set of
numbers is the sum of the numbers divided by
the count of the numbers. For example, the mean
of 4, 8, 12 is 8 because (4+ 8+ 12)/3= 8.”.
Mean absolute deviation was explained as “The
mean of the distances of each value from their
total mean”).

Proficiency to handle numbers. After the main exper-
iment, participants carried out a test designed to
measure long-term memory capacity for numbers.
In addition they completed a questionnaire measur-
ing numeracy.

Long-term memory for numbers. In the test for
long-term memory for numbers, participants saw
30 numbers presented individually for five seconds
each during an exposure phase. Fifteen of the
numbers were two-digit numbers (e.g., 45), and 15
were three-digit numbers (e.g., 543). They were
told that their memory for these numbers would
be tested later. In a recognition test, participants
were shown 60 numbers, half of which they had
seen during exposure, and were to decide if the
number had been shown during exposure or not.
The retention time was approximately 25–30 min.
During the retention time, participants filled out a
numeracy questionnaire and completed a set of unre-
lated tasks not reported here.

Numeracy questionnaire. Participants completed
a questionnaire consisting of 11 items measuring
numeracy. The questionnaire was a Swedish trans-
lation of the questionnaire used by Lipkus, Samsa,
and Rimer (2001; see also, Lipkus & Peters, 2009;
Peters, Slovic, Västfjäll, & Mertz, 2008; Peters
et al., 2006).

Design
The experiment used a mixed design with distri-
bution (unimodal/bimodal) as independent
between-subjects variable and sample size [small
(5)/large (10)] as independent within-subjects vari-
able. Participants were randomly assigned to the
experimental conditions. The approximate length
of the experiment was 120 min.

Results

The proportion of correct answers was used as a
measure of performance in the sample identification
task. Performance in the four conditions is summar-
ized in Table 2. The three accounts of inference pri-
marily make predictions with respect to the effects of
distribution and sample size and with respect to the
difference between the unimodal–small and
bimodal–large conditions. Therefore, the following
analyses focus on these three aspects of the data.
As is evident from Table 2, the variance in the
four conditions is not homogeneous. This fact
suggests that standard parametric statistical tests
should be avoided. In the following, nonparametric
approaches are therefore used when analysing the
data from the sample task.

Table 2. Performance in terms of mean proportion correct in the four

sample size by distribution conditions in Experiments 1 and 2 and

pooled over the two experiments

Experiment

Unimodal Bimodal

Large Small Large Small

Exp. 1 .99 (.02) .98 (.05) .87 (.15) .76 (.19)

Exp. 2 .87 (.17) .85 (.13) .76 (.27) .68 (.26)

Exp. 1 and

Exp. 2

.94 (.13) .92 (.11) .82 (.22) .73 (.22)

Note: Standard deviations in parentheses.
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Effect of distribution
Both the small-sample and the large-sample
accounts predicted better performance when the
underlying distribution is unimodal than when it
is bimodal. In line with this prediction, participants
performed significantly better (Wilcoxon: W=
289.5, p, .001) in the unimodal (Mdn= 1) than
in the bimodal condition (Mdn= .85).

Effect of sample size
If participants made inferences from a small-sample
representation or a large-sample representation it
was predicted that they would perform better with
large than with small samples. No such difference
was predicted if participants use a memory inference.
In accordance with the prediction from the two
former accounts, performance was significantly better
(Mann–Whitney: V= 153, p, .001) with large
(Mdn= 1) than with small samples (Mdn= .91).

Unimodal–small versus bimodal–large
The large-sample and small-sample accounts pre-
dicted a critical difference between the unimodal–
small and bimodal–large conditions. While the
small-sample account predicted better performance
in the unimodal–small than in the bimodal–large
condition, the large-sample account predicted the
opposite. Proportion correct in each of the four
conditions is summarized in Table 2. As can be
seen in the table, the critical difference is consistent
with the prediction of a small-sample account, and
comparing performance in the unimodal–small and
bimodal–large conditions revealed a significant
difference (Wilcoxon: W= 234.5, p= .009) in the
direction predicted by the small-sample account.

Influence of knowledge of distribution properties
It is possible that the effect of distribution is due to
participants in the bimodal condition having less
accurate knowledge of the objective distribution
than participants in the unimodal condition. To
investigate this possibility, four separate measures
of participants’ knowledge of the objective distri-
bution were calculated. First, we calculated the

mean absolute error (MAE) between the rated
and actual frequency in the production task.
MAE is given by

MAE =
∑10

n=1 rn − an| |
10

, (2)

where rn and an are the rated and actual frequencies
of interval n, respectively. Second, three measures
of knowledge of the distribution parameters were
calculated as the signed deviation between actual
and estimated parameter values of mean, median,
and mean absolute deviation (MAD). Each
measure was scanned for outlier responses (|z|.
2.5) but no data points had to be excluded from
the analyses. Figure 3 presents the average assessed
proportion consumer ratings (grey bars) in each
interval of the production task together with the pro-
portions from the objective distribution (black bars)
for the bimodal (Figure 3a) and unimodal (Figure
3b) conditions, respectively. The figure illustrates
that participants in both conditions reproduced the
overall shape of the distribution quite well. With
respect to MAE, however, the difference between
the two conditions approached significance
[t(34)= 2.00, p= .054; bimodal: M= 3.89, SD=
1.75 vs. unimodal: M= 2.96, SD= 0.94]. The
difference between the two conditions for estimates
of MAD was significant [t(34)= 3.08, p= .004;
bimodal: M=−123.8, SD= 138.8 vs. unimodal:
M= 7.6, SD= 115.3]. There was, however, no
difference between the two distribution conditions
with respect to estimates of central tendency (mean
and median; both ps. .62). Accordingly, MAE
and the signed deviation for MAD were entered as
covariates into a permutation test for one-way analy-
sis of covariance (ANCOVA) with distribution
(unimodal/bimodal) as between-subjects indepen-
dent variable and proportion correct as dependent
variable.1 The analysis showed that effect of distri-
bution (p, .005) remained after controlling for
the covariates.

Influence of individual differences. In both the LTM
task and the numeracy test we calculated the

1Permutation tests are a class of nonparametric test that rely on permutation and resampling techniques and make minimal assump-

tions about the data.
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number of correct responses as a measure of per-
formance. The relationship between individual
measures of long-term memory for numbers and
numeracy and performance in the sample identifi-
cation task was investigated by two separate
Spearman correlations. Neither the LTM–sample
relationship, rs(34)= .21, p= .22, nor the numer-
acy–sample relationship, rs(33)=−.1, p= .62,
reached significance.

Discussion

Experiment 1 was designed to investigate the influ-
ence of sample size and the shape of the objective

distribution on participants’ ability to infer which
of two test samples originated from an experienced
distribution. Both the large-sample and small-
sample accounts predicted a difference in perform-
ance depending on the shape of the objective distri-
bution, while the memory inference did not. In line
with this prediction, there was an effect of distri-
bution in the sample task with better performance
in the unimodal than in the bimodal condition.
It is possible that the effect was due to the unimo-
dal distribution being more easily learned than
the bimodal distribution. However, the effect
remained when controlling for two measures of dis-
tribution knowledge that differentiated between

Figure 3. Assessed proportion of consumer ratings (grey bars) and the underlying distribution (black bars) for the bimodal (Panel A) and the

unimodal (Panel B) conditions separately in Experiment 1. Whiskers denote 95% confidence intervals.

510 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2015, 68 (3)

LINDSKOG



the two conditions. Thus, the advantage for the
unimodal distribution was not merely an effect of
better knowledge. Further, neither the LTM–

sample nor the numeracy–sample correlation
reached significance, indicating that the difference
was not related to an individual proficiency with
numbers.

Both the large-sample and the small-sample
account predicted an effect of sample size.
Consistent with this prediction, participants per-
formed significantly better with a large than with
a small sample size. The two-sample accounts pre-
dicted different orders of the unimodal–small and
bimodal–large conditions with respect to pro-
portion correct. The observed pattern of results,
as indicated by the significant difference between
the unimodal–small and bimodal–large conditions,
was consistent with a prediction from a small-
sample but not a large-sample account.

In all four conditions participants performed very
well. It is possible that such good performance,
coming close to ceiling in some of the conditions,
might influence the conclusions that can be drawn
from Experiment 1. Even though the observed
levels of performance are similar to those found in
preliminary simulations of the models, and even
though the ordering of the four conditions is consist-
ent with the prediction from a small-sample account,
it would be valuable to show that the effects are
similar even under different conditions with levels
of performance that are further away from the
ceiling. In Experiment 2, reducing the sample size
to four and eight values created such a situation.

Taken together, the results suggest that people
use statistical properties of the test samples to
make an inference about which of the two was
drawn from the objective distribution. Further,
the results support the notion that the inference is
based on a small-sample, rather than a large-
sample, representation. However, because the
values in the test sample had all been observed
during learning, it is still possible that the task
could potentially be solved by a memory inference.
Therefore, Experiment 2 was designed to investi-
gate the possible use of a memory inference
further by including samples with values not seen
during exposure.

EXPERIMENT 2: OLD VERSUS NEW
SAMPLES

In Experiment 2, participants learned the distri-
butions as in Experiment 1. The test phase,
however, included samples with both values seen
during exposure (old) and values from the same dis-
tribution but not previously experienced (new). If
people rely on a memory inference to solve the
inference task a difference in performance
between new and old samples was expected regard-
less of the objective distribution. Experiment 1
indicated good performance in the inference task
already at a sample size of five values. To further
investigate the boundary conditions of participants’
ability to solve the task and to investigate a possible
ceiling effect, sample sizes in Experiment 2 were
reduced to four and eight, respectively. In
Experiment 2, distribution (unimodal/bimodal)
was manipulated between subjects while sample
size (4/8) and sample type (new/old) were manipu-
lated within subjects.

Method

Participants
Participants were 31 undergraduate students (10
male and 21 female) from Uppsala University
(M= 25.1 years, SD= 4). They received a movie
voucher or course credits as compensation for par-
ticipating in the study.

Materials and procedure
The learning phase of Experiment 2 was the same
as that of Experiment 1. The test phase used the
same tasks (sample identification, production, and
descriptive statistics) as those in Experiment 1,
with a slightly altered sample identification task
(described below). In addition to the main exper-
iment, the long-term memory for numbers test
was included as an additional behavioural measure
while the numeracy measure was excluded. The
properties of the stimulus material used in
Experiment 2 are illustrated in Table 1.

Sample identification. Half of the 40 trials had
samples with eight values, and half had samples
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with four values. On half of the trials the values for
the target samples were drawn from the 100 values
seen during learning (old sample) while the other
half of the trials had values drawn from the same
distribution but values not seen during learning
(new sample). As in Experiment 1, the distractor
sample was always randomly drawn from the distri-
bution not seen during learning.

Design
Experiment 2 used a mixed 2× 2× 2 design with
distribution (unimodal/bimodal) as an independent
between-subjects variable and sample size [small
(4)/large (8)] and sample type (new/old) as inde-
pendent within-subjects variables. Participants
were randomly assigned to the experimental con-
ditions, and the approximate length of the exper-
iment was 120 minutes.

Results

As in Experiment 1, the measure of performance in
the sample identification task was proportion
correct. Even though, as can be seen in Table 2,
the variance in the four conditions is closer to
being homogeneous than they were in
Experiment 1, the differences still motivate the
use of nonparametric tests. Following the predic-
tions of the three accounts, the analyses below
focus on the effects of distribution, sample size,
old versus new samples, and the ordering of the
four conditions.

Effect of distribution
The small-sample and large-sample accounts both
predicted better performance by participants in
the unimodal condition than by those in the
bimodal condition. The memory account predicted
no such difference. In line with this prediction, per-
formance was better in the unimodal (Mdn= .93)
than in the bimodal (Mdn= .86) condition.
However, the difference was only marginally sig-
nificant (Wilcoxon: W= 167.5, p= .06).

Effect of sample size
In Experiment 2 the sample sizes were reduced to
four and eight values in the test samples.

Nevertheless, the small-sample and large-sample
accounts predicted better performance with larger
than with smaller samples. Comparing perform-
ance with the two sample sizes revealed signifi-
cantly better (Mann–Whitney: V= 71, p= .01)
performance with large (Mdn= .95) than with
small samples (Mdn= .85).

Old versus new samples
The values in the test samples in the sample task of
Experiment 2 were either new or old. If participants
use a memory account to make inferences, there
should be a difference in performance between
the two sample types. More specifically, the use
of a memory heuristic would predict better per-
formance if samples are old than if they are new.
In contrast to this prediction, there was no effect
of the old/new manipulation (Mann–Whitney:
V= 140, p= .8; old, Mdn= .9 vs. new, Mdn= .9)

Unimodal–small versus bimodal–large
The order with respect to proportion correct over
the four sample size by distribution conditions is
summarized in Table 2. From the table it is
obvious that the order in both experiments
follows what could be expected from a small-
sample account. To achieve better statistical
power, the data were collapsed over the two exper-
iments. Figure 4 depicts the predictions from the
small-sample and large-sample accounts [for
underlying distributions of beta(5, 5) and beta(.5,
.5)] together with the pooled data from
Experiments 1 and 2. From the figure it is
obvious that the data follow a pattern that could
be predicted from a small-sample but not a large-
sample account. Further, the critical difference
between the unimodal–small and the bimodal–
large conditions was significant, t(65)= 2.25,
p= .03, in the direction predicted by the small-
sample account.

Influence of knowledge of distribution properties
The same four measures of knowledge of distri-
bution properties as those in Experiment 1 were
calculated, and knowledge of the two distribution
conditions was compared using four separate
t-tests. Each measure was scanned for outlier
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responses (|z|. 2.5), and as a result 2.5% of data
points were excluded from the analyses. As illus-
trated in Figure 5, and similar to Experiment 1,
participants reproduced the general shape of the
underlying distribution in both conditions.

With respect to MAE, there was no difference
between the two conditions [t(29)= 1.05,
p= .30; bimodal: M= 3.99, SD= 2.24 vs. unimo-
dal: M= 3.24, SD= 1.63]. The significant differ-
ence for estimates of MAD seen in Experiment 1
was replicated [t(29)= 2.66, p= .012; bimodal:
M=−174.1, SD= 127.7 vs. unimodal: M=−
63.3, SD= 102.0]. Both the difference for esti-
mates of median, t(27)= 1.92, p= .065, and the
difference for estimates of mean, t(27)= 1.86,
p= .074, approached significance.

The possible influence of knowledge of distri-
bution properties on performance in the sample
identification task was accordingly examined by
entering estimates of MAD, mean, and median
as covariates into a permutation test for one-way

Figure 4. Predicted proportion correct in the four experimental conditions [unimodal (uni) vs. bimodal (bim) with large (L) or small (S) sample

sizes] under the parameters for the underlying distributions that was used in the current experiments [beta(5, 5) vs. beta(.5, .5)] for the small-

sample and large-sample accounts together with the pooled data from Experiments 1 and 2.

Figure 5. Assessed proportion of consumer ratings (grey bars) and the

underlying distribution (black bars) for the bimodal (Panel A) and

the unimodal (Panel B) conditions separately in Experiment 2.

Whiskers denote 95% confidence intervals.
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ANCOVA with distribution (unimodal/bimodal)
as between-subjects independent variable and pro-
portion correct as dependent variable. The results
indicated that the marginally significant effect of
distribution was reduced (p= .15) when control-
ling for the covariates.

Influence of individual differences
A Spearman correlation showed that there was no
relationship between long-term memory for
numbers and performance in the sample identifi-
cation task, rs(28)= .16, p= .41.

Discussion

The pattern of results seen in Experiment 1 indi-
cated that people solve the sample identification
task by a process that uses the statistical properties
of both the test sample and the objective distri-
bution rather than by a memory inference. Even
though the memory inference cannot explain the
observed effect of distribution seen in Experiment
1, the test samples used in the first experiment
did not allow for ruling out the possibility of a
memory inference. Therefore, to fully rule out the
possible use of a memory inference, Experiment 2
included test samples with old values seen during
training and new values not previously encoun-
tered. If participants use a memory inference, this
should manifest itself as an effect of the old/new
manipulation. There was no effect of old versus
new values, indicating that participants do indeed
use statistical properties rather than the individual
values when choosing between test samples.

Experiment 2 replicated the effect of sample
size, from Experiment 1, with better performance
when samples contained eight values than when
they contained four. This effect was predicted by
the both the large-sample and small-sample
account. Thus, and perhaps not that surprising,
the more information contained in a sample the
easier it is to identify its source. The overall per-
formance in Experiment 2 was poorer than that
in Experiment 1. This was expected because as
the test samples become smaller it will be more dif-
ficult to infer which distribution they are drawn

from due to the increase in the standard errors of
the TS.

The two statistic-based accounts predicted
different orders with respect to proportion correct
over the unimodal–small and bimodal–large con-
ditions. Pooling the data from both experiments
gave support for the ordering suggested by a
small-sample account as opposed to a large-
sample account. Further, the critical difference
between the unimodal–small and bimodal–large
conditions was significant in the direction predicted
by a small-sample account.

If inferences are based on statistical properties,
an effect of distribution was expected. The effect
of distribution was only marginally significant in
the predicted direction. It is possible that this is
due to the generally lower level of performance in
Experiment 2. Participants did, however, perform
above chance in all conditions, signalling an
impressive ability to capitalize on small samples.

Concerning knowledge about the properties of
the experienced values, there was no effect of distri-
bution on estimates of central tendency. However,
and replicating the results of Experiment 1, partici-
pants in the bimodal condition gave worse esti-
mates of variability than did participants in the
unimodal condition. Further, the estimates of
variability underestimated the true variability to a
large extent. These findings replicate previous
research (Lindskog et al., 2013a) showing that
when the stimulus is a continuous numerical vari-
able the accuracy of variability estimates is depen-
dent on the shape of the underlying distribution.
The results are also consistent with the notion
that intuitive statistical judgements are based on
small samples.

The results from Experiments 1 and 2 suggest
three major conclusions. First, people are well
equipped to solve the inference task and need
only a small amount of information in the
samples to perform well above chance. Second,
the ability to solve the task, independent of which
strategy participants use, does not seem to be
related to a more general proficiency to use or
remember numbers. Finally, people seem to use
the statistical properties of the objective distri-
bution and the test samples to solve the inference
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task rather than base their judgements on a memory
inference. Further, the pattern of data supports the
idea that a process similar to the one suggested by
the NSM forms the statistical properties.

The good performance of participants in
Experiments 1 and 2, even with very small
samples, raises the question of whether people
could solve the inference task in more complex
situations. In many real-life situations, people are
not constrained to experiencing a single numerical
variable. Rather, they experience and learn several
variables in parallel. For example, it might be the
case that the worker in the chocolate factory
alternates between the two production lines,
thereby gaining knowledge of both types of
chocolate bars. Experiment 3 was designed to
investigate the extent to which learning an
additional variable would influence performance
in the inference task.

EXPERIMENT 3: MULTIPLE
DISTRIBUTIONS

In the first two experiments, participants learned
only one distribution, and the test samples would
come either from that distribution or not.
Experiment 3 explores a situation where partici-
pants experience and learn values from a unimodal
and bimodal distribution simultaneously and are
later asked which of two test samples comes from
one or the other of the two distributions. The
experiment thereby investigates boundary con-
ditions for people’s ability to use the information
in small samples. It is possible that presenting
two variables at the same time will lead to interfer-
ence where participants can no longer separate
the values from the two distributions. If this is
the case, performance should be worse than in
Experiment 1. On the other hand, if participants
are able to keep the two distributions separate,
they might, for example, benefit in the sample
task from being able to compare both test samples
to both distributions. Experiment 3 manipulated
focal distribution (unimodal/bimodal) and sample
size (5/10) within subjects.

Method

Participants
Participants were 18 undergraduate students (7
male and 11 female) from Uppsala University
(M= 22.1 years, SD= 2.2). They received a
movie voucher or course credits as compensation
for participating in the study.

Materials and procedure
Experiment 3 used the same procedure and stimu-
lus materials as those in Experiment 1 (see
Table 1). However, on each trial during the learn-
ing phase participants were presented with two
consumer ratings, rather than one, labelled with
separate product names (alpha/beta). The consu-
mer ratings for one of the products followed a
unimodal distribution while the ratings for the
other followed a bimodal distribution. The label
associated with each distribution was counterba-
lanced over participants. With some minor altera-
tion, described below, participants carried out the
same tasks as those in Experiment 1 during the
test phase.

Sample identification. On each of the 40 trials in the
sample identification task participants were pre-
sented with two test samples. Values for one of
the test samples were drawn from the unimodal dis-
tribution, and values for the other test sample were
drawn from the bimodal distribution. On half of
the 40 trials both samples contained five values,
and on the other half both contained 10 values.
Further, on half of the trials the participants’ task
was to identify which of the two test samples was
drawn from the unimodal distribution and on the
other half which of the two samples was drawn
from the bimodal distribution. Thus, half of the
trials had the unimodal distribution as the focal dis-
tribution while the other half had the bimodal dis-
tribution as focal distribution. The two
distributions seen during learning were labelled
with the fictitious product names alpha and beta.
Accordingly, focal distribution was manipulated
by on half of the trials asking participants to indi-
cate which of the two test samples was representa-
tive of the alpha product and on the other half

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2015, 68 (3) 515

IDENTIFYING THE SOURCE OF A SAMPLE



asking which was representative of the beta
product.

Production task. In the production task, participants
produced frequency distributions for the unimodal
and bimodal distribution separately.

Results

The effects of sample size and focal distribution on
sample identification performance were evaluated
by entering proportion correct as the dependent
measure into a dependent 2× 2 analysis of variance
(ANOVA) with sample size [small(5)/large(10)]
and focal distribution (unimodal/bimodal) as
within-subjects independent variables. Neither the
main effect of sample size [F(1, 17)= 0.37,
MSE= .03, p= .55; small: M= .83, SD= .26;
large: M= .85, SD= .22] nor the main effect of
focal distribution reached significance [F(1, 17)=
0.50, MSE= .04, p= .49; unimodal: M= .82,
SD= .27; bimodal: M= .86, SD= .21]. Further,
the sample size by distribution interaction was not
significant (F, 1). Thus, when learning two distri-
butions there were no effects of sample size or of
focal distribution.

Knowledge of distribution properties
The two previous experiments revealed effects of
distribution on some of the measures of knowledge
of distribution properties. In Experiment 3,
participants made separate estimates of the four
properties for both of the experienced distributions.
Estimates of the four properties—mean, median,
MAD, and MAE—were compared between the
two experienced distributions. None of the four
comparisons revealed a significant difference (all
ps. .27). Thus, when learning two distributions
simultaneously, participants are able to give
equally accurate estimates for properties of both
variables.

Influence of individual differences
The influence of individual differences on perform-
ance in the sample identification task was examined
by two separate Pearson correlations. Neither the

numeracy–sample nor the LTM–sample corre-
lation reached significance (both ps. .18).

One versus two variables—Samples
Because Experiment 3 used the same stimulus
material and procedure as those in Experiment 1,
it is possible to compare performance in the two
experiments. The effect of condition (unimodal/
bimodal/mixed) was investigated by means of a
Kruskal–Wallis nonparametric ANOVA. The
analysis revealed a significant effect of condition,
H(2)= 21.39, p, .001, and post hoc analysis
showed that performance in the unimodal con-
dition (Mdn= 1.0) was better than that in both
of the other two (bimodal: Mdn= .85; mixed:
Mdn= .91) conditions, which did not differ sig-
nificantly from each other.

One versus two variables—Distribution properties
Because there was no difference in accuracy of esti-
mates of distribution properties between the
bimodal and unimodal experienced distribution in
Experiment 3, the data were collapsed into one
accuracy measure for each property. This was
done by taking the mean of the accuracy of the
two estimates for each property. The accuracy of
estimates of distribution properties in
Experiments 1 and 3 were compared by means of
four separate one-way ANOVAs, one for each of
the four measures of distribution knowledge, with
condition (unimodal/bimodal/mixed) as indepen-
dent between-subjects variable. The analyses
showed that there were no significant differences
between the conditions with respect to estimates
of central tendency (both ps. .28). The effect of
condition on estimates of MAD was significant,
F(2, 51)= 5.4, MSE= 14,820.2, p= .007. Post
hoc tests showed that the difference between the
unimodal and bimodal conditions was significant,
as documented in Experiment 1, but that no
other pairwise comparisons reached significance.
Finally, the ANOVA with MAE as the dependent
measure, and follow-up post hoc tests, showed that
the performance in Experiment 3 on the pro-
duction task was significantly worse, F(2, 51)=
8.6, MSE= 3.17, p, .001, than that in both con-
ditions of Experiment 1.
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Discussion

Experiment 3 was designed to investigate whether
people are able to learn two numerical variables
simultaneously and whether they can accurately
separate and maintain knowledge of both variables
when evaluating from which of the two presented
test samples come. The accuracy of explicit esti-
mates of variability and central tendency indicated
that participants learned the target variables as
accurately as in Experiment 1, where only one
target variable was used. Similarly, comparing per-
formance in the sample identification task with
Experiment 1 showed that participants in
Experiment 3 were as accurate as those in the
bimodal condition of Experiment 1. Adding an
extra variable only marginally affected the ability
to accurately identify the source of a sample. The
results are thus a first indication that people can
accurately separate and maintain knowledge of the
properties of two simultaneously experienced vari-
ables and use this knowledge to infer the origin of
the two presented samples.

In contrast to the two previous experiments, there
was no effect of sample size. There are, at least, two
possible explanations for this difference. First, if
people use either a large-sample or a small-sample
representation to solve the task it is possible that
the somewhat lower performance in Experiment 3
may have pushed down performance to a region
where there is no longer a difference between the
two sample sizes. However, the sample size effect
was evident in Experiment 2 where the level of per-
formance was similar to that in Experiment
3. Another possibility is that people are able to evalu-
ate the two test samples against both experienced
distributions. Thus, deciding which of the two
samples was drawn from the bimodal distribution
could be done by recognizing which sample was
drawn from the unimodal distribution and choosing
the other one. It is possible that this type of strategy
would influence the effect of sample size on per-
formance. Such a strategy would require people to
have a considerable ability to engage in metacogni-
tive monitoring of their own decisions.

Experiment 3 further lacked an effect of distri-
bution. However, focal distribution rather than

experienced distribution was manipulated in
Experiment 3 in contrast to Experiments 1 and
2. Because the formulation of the small- and
large-sample accounts does not yet include possible
processes for the two-distribution case, it is diffi-
cult to make strong predictions about whether an
effect of focal distribution should be expected.
The design of the present study did not allow for
any conclusions as to which strategy participants
used to solve the two-distribution task. It will,
however, be an interesting question for future
research to investigate whether people are capable
of the metacognitive monitoring required for the
task to be solved by means of the elimination strat-
egy suggested above and the extent to which the
use of such a process would influence the effects
of focal distribution and sample size.

GENERAL DISCUSSION

A long line of research has explored people’s ability
to be intuitive statisticians. In general, this research
has investigated the extent to which people are able
to accurately summarize their experience of a vari-
able using some statistic. However, in several situ-
ations we are required to go beyond summary
statistics and infer which process or distribution
has generated a set of data. While previous research
has investigated how internally generated samples
from memory are utilized in decisions (e.g.,
Busemeyer & Townsend, 1993; Stewart et al.,
2006) and which information in samples people
use (e.g., Bar-Hillel, 1979; Chesney & Obrecht,
2012; Kareev et al., 2002; Obrecht & Chesney,
2013), little attention has been given to the cogni-
tive processes that govern inference from samples.
Further, previous research has rarely addressed
inference in situations with a continuous variable
that people have some experience with. The
present study extended previous research by addres-
sing three main questions: First, can people solve an
inference task that uses a continuous variable,
allows them to experience values from the objective
distribution, and allows them to experience all
values in the test sample? Second, are the statistical
properties of the underlying distribution and test
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sample used to solve the task or are judgements
based on a memory inference? Finally, does the
possible use of statistical properties involve a
large- or a small-sample representation? In
addition, the present study extended previous
research by outlining and testing predictions from
three possible processes that people might engage
in to solve the inference task.

In all three experiments, participants performed
well in the sample identification task, indicating
that they were able to correctly identify, well
above chance levels, which of two test samples
had been drawn from the same distribution as pre-
viously experienced values. In fact, even in a situ-
ation where the test samples contained only four
values, none of which had been shown previously,
as in Experiment 2, participants still performed
well above chance. Thus, and with respect to the
first research question, this indicates that people
are well equipped to make inductive inferences
from continuous variables that they have experi-
enced. While it is inherently difficult to make infer-
ences with a high level of certainty about
distribution properties from as little as four data
points (e.g., Kacelnik & Bateson, 1996) previous
research has indicated that people often stop
sampling long before they have any real possibility
of knowing distribution properties (e.g., Hertwig
& Pleskac, 2010). The results of the present
study suggest that people might be equipped with
strategies that allow them to infer distribution
properties, at a satisfactory level of confidence,
already at very small sample sizes. It is an interest-
ing venue for future research to explore the extent
to which people’s accuracy and confidence vary
with sample size.

The suggested processes relying on statistical
properties of the underlying distribution (small-
sample and large-sample account) made different
predictions with respect to the effects of distri-
bution, sample size, and new versus old values
than did the process relying on a memory heuristic.
Both Experiments 1 and 2 revealed strong sample
size effects with a direction predicted by the
small- and large-sample accounts. Further, in
both experiments the effect of distribution was in
the direction suggested by the two accounts

relying on statistical properties. The effect was sig-
nificant in Experiment 1 but only marginally sig-
nificant in Experiment 2. Controlling for
measures of knowledge of distribution parameters
left the effect of distribution more or less unaltered,
suggesting that it is not due to values in one of the
distribution being learnt more accurately. Finally,
in contrast to what could be expected from a
memory heuristic, there was no old–new effect in
Experiment 2. Taken together, these results
suggests that people use the statistical properties
of the underlying distribution and the presented
test sample to solve the inference task.

While the two statistics-based accounts pre-
dicted similar effects of distribution, sample size,
and an old–new difference, they made different
predictions with respect to the ordering of the con-
ditions. More specifically, they predicted a critical
difference between the unimodal–small and
bimodal–large conditions. This critical difference
was significant in the direction predicted by the
small-sample account. Further, because of the for-
mulation of the SP-function (Equation 1), it is
expected that the relative size of an effect of distri-
bution and test sample size will be similar if partici-
pants use a large-sample representation. In
contrast, if people are using a small-sample rep-
resentation we should expect a larger effect of dis-
tribution than of test sample size. The reason for
this is that with a small-sample representation the
distribution will influence all four components
(both MS and TS) in the SP-function while only
two of the components (the TS part) will be influ-
enced by sample size. Over the first two exper-
iments, the relative reduction in proportion
correct caused by the sample size manipulation
was 6%. In contrast, the corresponding reduction
caused by the distribution manipulation was 16%.
These two pieces of evidence together suggest
that the statistics-based process that participants
use involves a small-sample representation.

Experiment 3 extended the findings from the
two previous experiments by investigating
whether participants would be able to solve the
inference task after experiencing both the unimodal
and the bimodal distributions simultaneously
during learning. Comparing performance for

518 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2015, 68 (3)

LINDSKOG



explicit estimates of variability, central tendency, and
the production task showed that participants learned
the two distributions as well as did participants in
Experiment 1, who only experienced a single vari-
able. Further, the results from the sample identifi-
cation task revealed a similar level of performance
to that of the bimodal condition of Experiment
1. Thus participants were able to keep the values
from the two distributions separated throughout
learning and access properties specific to each distri-
bution in the test phase. Experiment 3 found no
effect of sample size. This could be due to the some-
what lower overall performance in Experiment 3
pushing down performance to a region where there
is no longer a difference between the two sample
sizes. The similar performance of participants in
Experiment 3, the bimodal condition in
Experiment 1, and Experiment 2, where the
sample size effect was evident, however, makes this
less likely. A second possibility is that participants
were able to utilize their knowledge of both under-
lying distributions when making inferences. For
example, when deciding which of the two samples
were drawn from the bimodal distribution, partici-
pants could have recognized which of the two were
drawn from the unimodal distribution and choose
the other one (see, Dougherty et al., 1999; Thomas
et al., 2008, for a similar suggestion of a conditional
memory search process). They could thus have bene-
fited from being able to make the, according to
Experiment 1, somewhat easier inference first.
What process supports inference in the two-distri-
bution case is unclear and should be an interesting
question for future research to explore.

All three experiments are limited to the use of
two extreme distributions. In real-life situations,
people may, however, experience distributions that
are quite different from those used here. If the type
of distributions that they experience in everyday life
influences the cognitive processes that people have
developed to make inferences, the distributions
used here might not fully capture the inference
process. The unimodal and bimodal distributions
and the respective sample sizes were, however,
chosen because they predict different qualitative pat-
terns of results with respect to the above suggested
cognitive processes. Future research should

investigate whether the findings here extend to situ-
ations where the presented data follow distributions
similar to what could be found in real-life situations.
Further, in the inference task participants were
always presented with two samples. This situation
allows participants to use the information both in
the target sample and in the distractor sample to
infer which of the two was drawn from the experi-
enced distribution. Future research should explore
this possibility by contrasting inference in the pres-
ence of a second sample (i.e., a comparison task)
with inference from only one sample (i.e., a yes/no
recognition task).

The present study makes two contributions to
previous research. First, it shows that when
people have first-hand experience with a continu-
ous variable they apparently do not need a lot of
information to infer whether a sample is drawn
from an experienced distribution. Also, the results
suggest that the cognitive process supporting such
inferences is one where computations are made
post hoc on small samples from memory retrieved
at the time of judgement, a process that would be
especially efficient and flexible when no prior infor-
mation is given about how experienced data will be
used. Thus, to summarize, when facing an infer-
ence from a small sample people seem to be effi-
cient and flexible intuitive statisticians.
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APPENDIX

Predicted performance by the large-sample and
small-sample accounts
This appendix outlines the computer simulations used to derive

the predicted performance of the large-sample and small-sample

accounts. The outcomes of three separate simulations are illus-

trated in Figure 1.

Similar to the experiments, the simulation creates two separ-

ate sets of values that are considered experienced distributions

(EDs) by random sampling 100 values from two separate beta

distributions, beta(α, β), with parameters α and β. The par-

ameters α and β are chosen so that one distribution is

bimodal, and the other is unimodal. Figure 1 shows the results

of three simulations where α and β are chosen to be closer to

[beta(3, 3) and beta(.7, .7)], further from [beta(8, 8) and beta

(.2, .2)], or equally far from [beta(5, 5) and beta(.5, .5)] the

uniform distribution as the distributions used in the

experiments.

The simulation then simulates 2000 agents that first acquire

knowledge about one of the EDs and then conducts the sample

task described in the experiments. Learning is simulated by

allowing each agent to retain a random subset of the 100

values in the respective ED (i.e., a subjective distribution;

SUD). Half of the simulated agents receive experience with

the unimodal and half with the bimodal ED. The size of the

SUD is governed by a memory parameter (γ). In the current

simulations γ= .6, which is motivated by the performance

seen by participants in similar experiments (see e.g., Lindskog

et al., 2013a, 2013b).

In the simulated sample task each agent makes 100 choices

between two test samples (TS1 and TS2). For each choice, TS1
and TS2 are drawn randomly from the two EDs. That is, both

test samples are old in the sense that they contain values that

could possibly be in the SUD. The choice between TS1 and

TS2 is made by means of the SP-function (Equation 1).

Accordingly, the agent concludes that TS1 rather than TS2 is

drawn from the OD if SP(C, T1) − SP(C, T2). 0 and the

opposite if SP(C, T1) − SP(C, T2), 0. The difference

between the large-sample account and the small-sample

account is found in how C is defined. For the large-sample

account, C is defined as the entire SUD. In the small-sample

case, C is defined by a random sample of six observations

drawn from the SUD for each choice.

The SP-function includes a parameter (θ) that determines

the relative weight between the difference of means and the

differences of the standard deviations. Because there is no a

priori reason to expect that people would prefer one to the

other, the simulations illustrated in Figure 1 used θ= .5. It

should be noted, however, that for the distributions used here

the same qualitative pattern of predicted performance is found

for θ≤ .5. When θ becomes larger than .5, performance

rapidly begins to decrease with the current distributions

because both ODs have the same mean.
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