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Likelihood estimations are crucial for dealing with the uncertainty of life. Here, infants’ sensitivity to the dif-
ference in likelihood between two events was investigated. Infants aged 6, 12, and 18 months (N = 75) were
shown animated movies of a machine simultaneously drawing likely and unlikely samples from a box filled
with different colored balls. In different trials, the difference in likelihood between the two samples was
manipulated. The infants’ looking patterns varied as a function of the magnitude of the difference in likeli-
hood and were modulated by the number of items in the samples. Looking patterns showed qualitative simi-
larities across age groups. This study demonstrates that infants’ looking responses are sensitive to the
magnitude of the difference in likelihood between two events.

One of the most important features of the human
mind is its ability to make inferences and general-
izations from sparse data (Tenenbaum, Kemp, Grif-
fiths, & Goodman, 2011). It has been proposed that
our brain accomplishes this difficult task by using
probability information to represent statistical regu-
larities in our environment and guide our actions
(Clark, 2013; Knill & Pouget, 2004). Thus, revealing
the origins of how probability information is pro-
cessed is crucial to understanding how the human
mind works. Although much is known about how
adults process probability information, less is
known about how these abilities develop during
infancy. Here, we developed a novel eye-tracking
paradigm to investigate how infants of different
ages respond to the likelihood of two events pre-
sented simultaneously while the relative difference
in likelihood between the two samples changes.

Brunswik (1955) was probably the first to sug-
gest that people are “intuitive statisticians” (see also
Gigerenzer & Murray, 1987; Peterson & Beach,
1967). The metaphor alludes to an ability to
correctly estimate statistical properties in the envi-
ronment and draw accurate statistical inferences.

Recent studies have investigated whether infants
are also intuitive statisticians in the sense that they
make inductive inferences from a small set of data
(Denison, Reed, & Xu, 2013; Denison & Xu, 2014;
Lawson & Rakison, 2013; T�egl�as, Girotto, Gonzalez,
& Bonatti, 2007; T�egl�as, Ibanez-Lillo, Costa, &
Bonatti, 2015; Xu & Garcia, 2008). For example, Xu
and Garcia (2008) conducted a series of experiments
in which they presented 8-month-old infants with a
box containing many (e.g., 70) red balls and a few
(e.g., 5) white balls. In alternating trials, they drew
matching and mismatching samples from the box.
The matching samples contained mostly red (e.g.,
4) balls and a few (e.g., 1) white balls, whereas mis-
matching samples had the reverse proportions.
Data revealed that infants inferred the probability
of the sample given the population (i.e., the likeli-
hood of the sample) and looked longer at the unli-
kely sample because this sample did not represent
what they observed in the population.

Other studies have investigated whether infants
already have expectations about single-event proba-
bilities before having experienced any outcome
(Lawson & Rakison, 2013; T�egl�as et al., 2007, 2011).
For example, T�egl�as et al. (2007) presented 12-
month-old infants with movies in which three yel-
low objects and one blue object randomly moved
inside a container before one of them exited it.
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Results showed that infants looked longer when
they observed an unlikely event (i.e., a blue object
leaving the container) than when they observed a
likely event (i.e., a yellow ball exiting the con-
tainer). These findings suggest that infants expected
that when the objects moved at random, one would
likely observe one of the three identical objects fall-
ing out of the container rather than the single
object.

These findings are crucial, as they suggest that
infants infer the likelihood of events and use these
inferences to form expectations about future events.
This is a remarkable step in infant development
especially because this ability potentially guides
fundamental cognitive functions such as attention
and learning. On a daily basis, infants face the chal-
lenge to learn new tasks and develop new skills.
Despite distractors, they have to extract the most
relevant information and use this information for
further learning. If infants have the capacity to esti-
mate how likely an event is as compared to the
other events, they could distribute their attentional
resources accordingly, which would then facilitate
learning. Indeed, in a study by Tummeltshammer
and Kirkham (2013), it has been shown that proba-
bilistic relations between events affect infants’ atten-
tion and enable infants to effectively guide their
actions.

The general approach of the probabilistic infer-
ence studies in the literature is illustrated in Fig-
ure 1A. Here, infants are first familiarized with two
populations (P1 and P2). Then, a sampling process
(a, dashed line) produces a sample (S) from one of
the populations (P1 or P2). For example, in the stud-
ies by Xu and colleagues, the experimenter draws
(a) a sample of five balls (S) from the box contain-
ing many blue balls (P1), and both S and P1 are
shown to the infant. The infant is then expected to
combine the information from the sample with the
information from the population and respond to
either the probability of the sample given the popu-
lation (i.e., p(S|P)), or the probability of the popula-
tion given the sample (i.e., p(P|S)), depending on
the experimental task.

As previous research suggests, infants estimate
how likely an event is based on the population (or
reference class) from which the event has been gen-
erated. Despite being an important capacity, esti-
mating the likelihood of a single event is not
sufficient to make good decisions in many real-
world situations. It might be that in some situations
children would also benefit from considering and
comparing the likelihood of two or more events
when making simple decisions. For example, it has

been proposed that children develop intuitive theo-
ries in a way that can be described by a Markov
Chain Monte Carlo search algorithm that explores a
space of candidate theories (Ullman, Goodman, &
Tenenbaum, 2012). To use such a process, infants
would have to be able to compare the likelihood of
the available candidate theories. Similarly, in order
to distribute attentional resources to facilitate learn-
ing, as discussed earlier, infants would need to esti-
mate how likely an event is as compared to other
events.

If infants respond to the likelihood of single
events, as previous research suggests, it is possible
that they could also infer the likelihoods of two or
more events presented simultaneously and show
sensitivity to a difference in likelihoods. Recent
work has begun to demonstrate that indeed chil-
dren can discriminate between two simultaneously
presented samples given the population from which
the samples were drawn (Denison & Xu, 2014;
Waismeyer, Meltzoff, & Gopnik, 2015). Denison
and Xu (2014), for example, presented 10- to 13-
month-olds with two jars of lollipops. The two jars
included both desirable and undesirable lollipops,
but in different proportions. The experimenter drew
a lollipop from each jar and placed them in sepa-
rate cups, after which the infant was encouraged to
crawl to the cup to get the lollipop of their choice.
Over four experiments, Denison and Xu (2014)
showed that the infants consistently reached the
cup containing a lollipop that was taken from the
jar with the most favorable ratio of desirable to
undesirable lollipops. These findings indicate that
infants can simultaneously keep representations of
two separate likelihoods, and have their actions be
guided by these representations. Similarly, Wais-
meyer et al. (2015) showed that infants could con-
sider two likelihoods simultaneously to make an
inference about which of the two items is more
likely to activate a machine.

An interesting question arising from these stud-
ies is to what extent infants’ responses are influ-
enced by the difference between the likelihoods of
the two events. In the Denison and Xu (2014) study,
for example, it is three times more likely (.75/
.25 = 3) that the preferred lollipop is drawn from
the jar with the most favorable ratio than from the
other jar. Would infants respond differentially if the
absolute or relative difference between likelihoods
were to change, and at what point would they
become indifferent? For example, would the pro-
portion of infants choosing the most favorable jar
have increased if the relative likelihood were 10
instead of 3? Beginning to answer such questions is

e508 Kayhan, Gredeb€ack, and Lindskog



an important piece of the puzzle for understanding
how infants’ probabilistic reasoning develops.
Doing so, however, requires a task where infants’
responses can scale as a function of the difference
between likelihoods.

Figure 1B conceptually illustrates such a task,
where an infant could respond differentially to the
likelihood of two separate events. Here, a sampling
process (a) has generated two outcomes (S1 and S2)
from a population (P). This would be equivalent to
drawing two samples from the population box
simultaneously. A situation where the individual
estimates of likelihood need to be generated from a
memory representation of the population, similar to
the study by Denison and Xu (2014), is accom-
plished by covering up the population before the
samples are shown. Now, the infant’s task would
be to combine the information in S1 and S2, with a

memory representation of P, to estimate the likeli-
hood of S1 and S2, given P (i.e., p(S1|P) and p(S2|P)).
Indexing infants’ responses in terms of looking
times should result in longer looking times to one
of the samples if infants are indeed able to integrate
a memory representation of the population with the
information in the two samples and use this to dis-
tinguish between two events based on a difference
in likelihood. Furthermore, if infants are sensitive to
the magnitude of the difference, the proportion of
looking time to one of the samples should increase
with an increasing difference. However, if infants
do not distinguish between the two events based
on their likelihood, we would expect them to look
equally long at the two samples.

In the current study, we explored this novel
situation in an eye-tracking paradigm and investi-
gated whether infants differentially respond to the

Figure 1. Two approaches to studying probability estimations in infants. Figure 1A illustrates a situation in which a population (P) has
generated a sample (S) with some process (a, dashed line) after the infant has been familiarized to two different populations (P1 and P2;
see Xu & Garcia, 2008). Infants’ task is to combine the information in one of the populations P1 or 2 and a sample S and respond to the
magnitude of p (S|P1 or 2) or p (P1 or 2|S), as indexed by their looking time. In Figure 1B (the present study), sampling process a has gen-
erated two samples from the same P. Infants’ task would be to combine the information in S1 and S2, when P is no longer available,
and respond to the magnitude of p(S1|P) and p(S2|P), as indexed by their relative looking time to two outcomes.
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likelihood of two samples when the population
from which they were drawn is no longer visible.
We presented infants with a population of balls
comprising two colors. After covering the popula-
tion, two samples, one likely and one unlikely with
respect to the population, were drawn and pre-
sented to the infants as we measured their relative
gaze duration.

We targeted three auxiliary aspects of the task.
First, using a within-subjects design, we investi-
gated whether infants’ looking times scale continu-
ously to the differences between event likelihoods
by manipulating the magnitude of the relative dif-
ference in likelihood of the two events. Previous
research has indicated that infants look more
toward an unlikely than a likely event when events
are presented separately (e.g., Xu & Garcia, 2008). If
infants represent the likelihood of two events pre-
sented simultaneously in a similar manner, and if
their responses are influenced by the difference in
likelihood between the two events, here measured
in relative terms, we predicted a gradual monotonic
change in looking preferences for the unlikely event
over the likely event when the relative likelihood
changes (i.e., the looking preference is a function
of relative likelihood that entirely increases or
decreases). Put differently, infants should look more
toward the unlikely than the likely event and even
more so when the relative difference between the
two likelihoods is larger. We graded likelihood
information to ensure that our dependent measure
actually targeted the key concepts under investiga-
tion instead of other low-level features, such as
luminance, color, or contrasts (see Aslin, 2012 with
respect to infant eye tracking and Xu & Garcia,
2008 and Xu & Denison, 2009 with respect to prob-
ability estimations).

Second, we investigated whether the number of
objects in the samples would influence infants’
responses. We compared a small sample set size

(i.e., six items in each sample) to a large sample set
size (i.e., eight items in each sample) while keeping
the relative likelihood constant (see Table 1). The
sample set size of six was motivated by previous
research (e.g., Xu & Garcia, 2008) indicating that
infants can estimate probabilities in a one-sample
situation (Figure 1A) with this sample set size. We
chose the sample set size of eight with two con-
straints in mind. First, the number of balls in this
set should be greater than the number of balls in
the small sample set while keeping the relative like-
lihoods the same. Second, the number of minority
balls in the samples should not exceed the number
of minority balls in the population, which would
render a situation with impossible samples. It
should be noted that the set size manipulation was
primarily intended to investigate if different sample
size were differentially processed. To avoid issues
with infants’ set size limitations, infants were not
required to remember the samples, rather they were
in full view once they had been presented.

Finally, even though previous research has indi-
cated developmental differences with respect to
infants’ probability estimations (Denison et al.,
2013), the developmental trajectory of infants’
responses to the likelihood of several events has
never been investigated. By using the same task to
test 6-, 12-, and 18-month-old infants, we aimed to
examine the developmental trajectory of this ability
over the first one and a half years of life.

Method

Participants

Twenty-five 6-month-olds (M = 184.54 days,
SD = 15.79 days; 14 girls), twenty-five 12-month-
olds (M = 363.13 days, SD = 12.42 days; 10 girls),
and twenty-five 18-month-olds (M = 551.75 days,
SD = 10.41 days; 15 girls) were included in the

Table 1
Relative Likelihood of the Samples (625, 81, 25, and 9) Used in the Study, the Probability of the Likely and the Unlikely Samples, the Parameters
Used to Create These Likelihoods (Sample and Population Ratios), and Sample Set Sizes

Sample set size
Sample ratio

(likely/unlikely)

Population ratio

1:5 1:3

Probability
(likely/unlikely)

Relative
likelihood

Probability
(likely/unlikely)

Relative
likelihood

6 1:5/5:1 .4018/.0006 625 .3559/.0043 81
6 2:4/4:2 .2009/.0080 25 .2966/.0329 9
8 2:6/6:2 .2604/.0004 625 .3114/.0038 81
8 3:5/5:3 .1041/.0041 25 .2076/.0230 9
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sample. One 6-month-old and one 12-month-old
were tested but excluded from the sample during
the analysis due to a lack of data (< 4 trials). Data
were collected during October–December 2014. Par-
ticipants were recruited from a database of volun-
teer families. Families received gift cards in return
for their participation.

Stimuli

We created eight 20-s animated movies in
1,280 9 1,024 screen resolution using Anime Studio
Pro (Figure 2A–C). As shown in Figure 2A, the
infants were presented with the population when
colored balls (diameter 0.5 visual degrees) fell from
the top of the screen into a rectangle-shaped con-
tainer (6.5 9 5.3 visual degrees in the form
Width 9 Height for a viewing distance of 60 cm).
Once all the balls piled up inside the container (8 s),
the population container was covered with a light

gray occluder (2 s). Next, infants’ attention was
drawn to the bottom of the container (Figure 2B) by
a flashing light accompanied by a siren sound (2 s).
Immediately after, two lids at the bottom of the pop-
ulation container were opened where two samples of
balls were released into smaller separate containers
(4.6 9 2.9 visual degrees) at the bottom of the screen
(2 s). In the following 3 s, the samples were com-
pletely visible to the infants to compare them, as the
balls reached the small containers and remained sta-
tic in the containers (3 s) until the end of the movie
(Figure 2C). The total time between the appearance
of the first ball in the sample and the end of the trial
was 8 s. The total number of balls and the propor-
tions of the two colors in the population and samples
for each condition are described in Table 1. Infants
were presented with a new population and two new
samples on each trial without any familiarization
period. An example stimulus movie and descriptive
statistics for the first 12 s of the stimulus

Figure 2. Snapshots from an example stimulus movie. Figure 2A shows the ratio of the balls in the population box and the occlusion
of the box. Figure 2B demonstrates the sampling event. Figure 2C presents sampled outcomes. The red rectangles in Figure 2C illustrate
the approximate position and size of the areas of interest used during data analysis.
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presentation can be found in the Supporting
Information.

The colors of the balls were changed in different
trials to keep the infant’s attention on the events
and avoid potential confounding of specific colors.
The direction from which the balls entered the
scene during the presentation phase, the color of
the minority and majority balls, and the location of
the likely and unlikely samples were counterbal-
anced across movies. The positions of the balls in
the population and samples were pseudorandom-
ized for each movie. Each infant observed the same
stimulus movies in a counterbalanced order. Short
unrelated attention grabbers (each lasting for 5 s)
separated each movie. Movies were identical in
terms of the timing of the events in order to ensure
that infants had the same amount of exposure to
each stimulus movie. The entire stimulus presenta-
tion took 7 min (i.e., sixteen 20 s movies each sepa-
rated by 5 s attention getters).

Experimental Design

The total number of balls (n = 72) in the popu-
lation was kept constant across movies. We
manipulated the relative likelihood of the two
samples within subjects by changing the propor-
tion of the two colors in the population and the
samples to obtain four levels of relative likelihood:
625, 81, 25, and 9 (see Table 1). Relative likelihood
was calculated as p(S1|P)/p(S2|P) with S1 and S2
being the likely and unlikely sample, respectively.
Thus, a relative likelihood of 625 means that the
likely sample is 625 times more likely to be ran-
domly drawn from the population than the unli-
kely sample (e.g., the relative likelihood for a 1:5/
5:1 sample ratio drawn from a 1:3 population ratio
was calculated as follows: (3/4)5 9 (1/4)1 � (1/
4)5 9 (3/4)1 = 81).

We also manipulated the total number of balls in
the samples to utilize a large (n = 8) and small
(n = 6) sample set. Each participant was presented
with two trials for each stimulus, resulting in a total
of 16 trials (2 9 4 likelihood levels [relative likeli-
hood of 625, 81, 25, and 9] 9 two sample set sizes
[6 and 8 items in each sample]). The four likelihood
levels were created by varying both the ratio in the
samples and the ratio in the population, as
described in Table 1.

Experimental Setup and Procedure

Gaze data were recorded at 120 Hz by a corneal
reflection eye tracker (Tobii 120; Tobii Technology,

Danderyd, Sweden) calibrated using a 5-point
procedure (Gredeb€ack, Johnson, & von Hofsten,
2010). The procedure was repeated if four or fewer
calibration points were detected. The 16 stimulus
presentations were intermixed with brief attention
grabbing movies that served to redirect the infant’s
attention to the screen. Each experimental session
lasted an average 30 min and consisted of an intro-
duction, testing, and debriefing. Six- and 12-month-
olds were seated in a Maxi Cosi car seat placed on
their parent’s lap. Eighteen-month-olds were seated
directly on their parent’s lap. All participants
viewed the testing material from a distance of
60 cm.

Measures and Data Reduction

We measured the looking times toward the small
containers for each trial. We excluded trials in
which the total looking time for the entire screen
was < 25% during the analysis interval. We deter-
mined one area of interest (5.6 9 7.5 visual degrees)
for each container (Figure 2C). Initial data analyses
of the final 6 s of the stimulus presentation revealed
that infants lost interest in looking at the two sam-
ples approximately 3 s after they had been released,
resulting in poor data quality and a large percent-
age of invalid data points. Therefore, we defined
our time of interest as the first 3 s after the balls
were released and visible.

Data Analysis

Due to the incomplete data matrix (23% of the
trials were missing for 6-month-olds, 14% for 12-
month-olds, and 8% for 18-month-olds) and the
standard assumption of sphericity likely not being
met, we chose to analyze the current data set using
a general linear mixed model (GLMM) instead of
the standard approach of repeated measures analy-
sis of variance. See Hoffman and Rovine (2007) for
details about the benefits of using GLMM for
incomplete data sets and assumptions of sphericity
arguments.

For statistical analyses, we calculated a propor-
tion score (PS) for each trial as the proportion look-
ing time spent looking at the unlikely sample over
the total looking time spent looking at both likely
and unlikely samples. Data processing was per-
formed in MATLAB (MathWorks, Friedrichsdorf,
Germany) using the open source analysis tool
TimeStudio (Nystr€om, Falck-Ytter, & Gredeb€ack,
2016, version 1.1.). The actual analysis, settings, and
source code for our analysis can be downloaded
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from uwid: ts-29d-55d within the TimeStudio
environment.

Results

All GLMMs were fitted using the lme() function
from the nlme package in R (Pinheiro, Bates, Deb-
Roy, & Sarkar, 2015). To ease the interpretation, we
present the effects of the fixed factors in each model
evaluated with conditional F tests. In addition, the
details of the full model, including all predictors,
are shown in Table 2.

Age, Likelihood, and Sample Set Size as Predictors

First, we analyzed the effects of age, relative like-
lihood, and sample set size on PS using a GLMM
with age, relative likelihood, and sample set size as
fixed factors and participants as a random factor.
This analysis revealed a significant two-way inter-
action between relative likelihood and sample set
size, F(3, 221) = 13.90, p < .001, and a significant
main effect of relative likelihood, F(3, 208) = 5.97,

p < .001. No other effect reached significance
(Fs < 2 and ps > .16). Initially, we also included
order as a fixed factor in the model. Because the
data revealed no order effects, this factor was
accordingly dropped from the model to ease the
presentation.

When the dependent variable is a proportion cal-
culated from trial to trial, it is under some condi-
tions more appropriate to use an empirical logit
transform on the proportion measure before apply-
ing a linear regression. We therefore also ran all of
our analysis on the empirical logit transformed pro-
portion measure. These additional analyses gave
highly similar results and did not change any of the
conclusions driven from the untransformed data.

The Effect of Age and Likelihood in the Small and Large
Sample Set Size Conditions Separately

The interaction between relative likelihood and
sample set size (Figure 3) was further explored by
examining each condition separately using two
models with age and relative likelihood as fixed
effects and participants as a random effect.

For the large sample set size, we found no signif-
icant effects (ps > .35). For the small sample set size,
we found a significant main effect of relative likeli-
hood, F(3, 176) = 21.3, p < .001. As illustrated in
Figure 3, this main effect might be because infants’
looking preferences for the unlikely event compared
to the likely event decreased, as the relative

Table 2
Beta Weights (b), Standard Errors (SE), and p Values (p) for the
Fixed Factors in the Full General Linear Mixed Model With Age, Rela-
tive Likelihood (RL), and Sample Set Size as Predictors

Effect b SE p

Age: 12 months .10 .08 .49
Age: 18 months .01 .08 .93
RL: 81 �.09 .08 .50
RL: 25 �.34 .08 .01
RL: 9 �.31 .08 .02
Set size: large �.42 .08 .01
Age: 12 Months 9 RL: 81 �.05 .11 .69
Age: 18 Months 9 RL: 81 .06 .11 .58
Age: 12 Months 9 RL: 25 �.08 .11 .48
Age: 18 Months 9 RL: 25 �.10 .11 .38
Age: 12 Months 9 RL: 9 �.10 .11 .38
Age: 18 Months 9 RL: 9 �.06 .11 .62
Age: 12 Months 9 Set Size: Large �.02 .11 .88
Age: 18 Months 9 Set Size: Large .08 .11 .60
RL: 81 9 Set Size: Large .20 .11 .17
RL: 25 9 Set Size: Large .42 .11 .00
RL: 9 9 Set Size: Large .31 .12 .03
Age: 12 Months 9 RL: 81 9 Set Size: Large �.06 .16 .65
Age: 18 Months 9 RL: 81 9 Set Size: Large �.09 .15 .43
Age: 12 Months 9 RL: 25 9 Set Size: Large �.02 .16 .84
Age: 18 Months 9 RL: 25 9 Set Size: Large .05 .16 .70
Age: 12 Months 9 RL: 9 9 Set Size: Large .06 .16 .62
Age: 18 Months 9 RL: 9 9 Set Size: Large .02 .16 .87

Figure 3. Mean proportion score for the small (circle) and large
(triangle) sample set sizes as a function of relative likelihood
pooled over the three age groups. Proportion scores above 0.50
indicate looking longer at unlikely sample, whereas values below
0.50 represent looking longer at the likely sample. The gray hori-
zontal line represents chance. Vertical bars represent 95% confi-
dence intervals.
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likelihood of the two samples decreased, suggesting
a monotonic change in the infants’ looking prefer-
ences.

None of the other effects in the small (Fs < 1.0)
or large (Fs < 1.05) sample set size reached signifi-
cance. Follow-up post hoc tests (Tukey) showed
that the pairwise difference between the 625 and 25
conditions was the only one that reached signifi-
cance (p = .03), though the differences between the
625 and 9 conditions approached significance
(p = .06; all others ps > .12).

The Effect of Likelihood in the Small Sample Set Size for
Each Age Separately

No significant effect of age was observed in any
of the above analyses. However, we wanted to
ensure that the effect of relative likelihood in the
small sample set was not driven primarily by one
of the three age groups. Therefore, for the small
sample set, we examined each age group separately
using models including relative likelihood as a
fixed effect and participants as a random effect.
For all three age groups we found a significant
main effect of relative likelihood, 6-month-olds:
F(3, 52) = 3.1, p = .03; 12-month-olds: F(3, 58) = 7.2,
p < .001; 18-month-olds: F(3, 66) = 14.4, p < .001,
indicating that all three age groups exhibited the
main effect of relative likelihood (Figure 4).

Discrimination of Likelihoods

The pattern of results illustrated in Figure 4
indicates that, although all three age groups

discriminated between the two samples at a
relative likelihood of 625 (confidence intervals do
not overlap .5), only the 18-month-old infants did
so for the other three levels of relative likelihood.
Supplementary analysis with single sample t tests
revealed that the PS for the 18-month-olds was sig-
nificantly different from .5 for all four levels of rel-
ative likelihood. However, at 6 and 12 months of
age, only the largest relative likelihood differenti-
ated from .5 (only marginally at 6 months), sug-
gesting more individual variability at younger
ages. The t–test results were corrected for multiple
comparisons within age groups according to the
method proposed by Benjamini and Hochberg
(1995).

Discussion

Estimating the likelihood of two events simultane-
ously is an important ability when dealing with
the uncertainty of life. Previous research has
shown that infants form expectations about the
probability of single events and are surprised
when their expectations are violated (T�egl�as et al.,
2007; Xu & Garcia, 2008). Recent work (e.g., Deni-
son & Xu, 2014; Waismeyer et al., 2015) also indi-
cates that infants can consider two likelihoods
simultaneously. Based on these findings, however,
it was unclear whether infants’ responses, when
presented with two events at the same time, are
influenced by differences in the likelihood between
the events.

Here, we extended this research by introducing
a novel task where infants’ responses scale to the
difference, in relative terms, between the likeli-
hoods of two events. To approximate how such
estimates are often framed in real-world situations
and in previous paradigms (e.g., Denison & Xu,
2014), we tested infants with a task in which they
had to integrate information from two visible
samples with a memory representation of the
population from which the samples were drawn.

To achieve our main goal, we developed an eye-
tracking paradigm that implemented the approach
illustrated in Figure 1B. If infants differentiated
between the two samples based on their likelihood
and if they responded to the magnitude of the rela-
tive difference between the two samples, we
expected it to be evident in the time spent looking
at the samples (i.e., relative looking time). Our data
indicate that infants differentially responded to the
difference in likelihood between two events and
allocated more looking time to one of the two

Figure 4. Mean proportion score in the three age groups as a
function of relative likelihood. The gray horizontal line denotes
indifference between the two events. Proportion scores above
0.50 indicate looking longer at unlikely sample, whereas values
below 0.50 represent looking longer at the likely sample. Vertical
bars represent 95% confidence intervals.
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samples. This finding suggests two important con-
clusions. First, it provides novel insights into the
scope of infants’ abilities as “intuitive statisticians,”
particularly into the ecologically important task of
comparing the likelihood of two events. Second,
because the population is occluded after the presen-
tation phase, alternative explanations such as the
possibility that infants distinguish between the two
samples by referring each of them visually to the
population can be ruled out. This design feature
alludes to the need for a mental representation of
the statistical properties of the population. Research
in other domains has shown that infants already
form mental representations of objects moving
behind an occluder (Gredeb€ack & von Hofsten,
2007) or the structure of a causal system (Sobel &
Kirkham, 2006) during their first 6 months of life.
Our results provide further evidence that infants
can form an abstract representation of the statistical
properties of a population that is no longer in sight
and integrate this information with statistical prop-
erties of the two samples.

We also assessed whether infants’ looking times
scaled according to the magnitude of the relative
likelihood. We expected a monotonic change in the
infants’ looking preferences for the unlikely event
compared to the likely event as the relative likeli-
hood changed. Our results indicate that infants
looked differently at the two samples and their
looking pattern changed monotonically as a func-
tion of the relative likelihood. Recently, Aslin
(2012) noted that scaling, the fact that the depen-
dent variable changes in a continuous manner in
response to similar changes in the stimuli, is impor-
tant to ensure that behavior reflects the processes
under investigation. In this case, scaling makes it
highly likely that infants’ responses were affected
by relative likelihood and not by low-level percep-
tual features, such as color, luminance, and con-
trasts (Aslin, 2012), which are also present in the
task.

A closer look at the data revealed that all age
groups looked longer at the unlikely sample when
the relative likelihood was large (i.e., 625), which
replicates previous findings (e.g., Xu & Garcia,
2008). However, as the relative likelihood between
the samples decreased, the looking pattern altered.
Although 6- and 12-month-old infants were indif-
ferent to the two subsets at low levels of relative
likelihood (i.e., 25 and 9), 18-month-olds exhibited a
change in their looking preference: They looked sig-
nificantly longer at the likely subset than the unli-
kely subset. Notably, the change in the looking
pattern was qualitatively the same in all age

groups. This finding was unexpected, though inter-
esting, as we hypothesized that all age groups
would perform at chance level when it is harder to
differentiate between the likely and unlikely events
(e.g., a relative likelihood of 25 and 9). Why is there
a shift in looking behavior as the magnitude of the
relative likelihood decreases? One possible explana-
tion is that because of the increased complexity of
the information, infants preferred to allocate their
attention to the subset that looks familiar. The
increased difficulty to dissociate the unlikely sam-
ple from the likely one or the other way around
became more challenging for infants, as the relative
likelihood between the two samples decreased,
imposing more processing demands on infants
while they responded to the likelihood information.
In other words, when there is greater uncertainty
about the relative likelihood of events, infants pre-
ferred to look at the subset that represents a previ-
ously observed set. This interpretation is in line
with studies showing that infants pay more atten-
tion to familiar items as the complexity of the stim-
ulus increases (Mather, 2013). In addition, this
pattern of responses might be explained in the light
of findings demonstrating that the probability of
infants’ looking away from a stimulus shows a u-
shaped pattern as a function of the complexity:
Infants look away more, both when the stimulus is
too easy and when it is too difficult to process
(Kidd, Piantadosi, & Aslin, 2012). Therefore, it
might be that because of the increased level of diffi-
culty to encode the relative likelihood between the
likely and the unlikely samples when the difference
between the two samples was large, infants pre-
ferred to look at the subset longer that looked
familiar.

What are possible cognitive processes the infants
could be engaged in when looking at the two sam-
ples to produce our observed pattern of data? As
noted in the introduction, we aimed to manipulate
the relative difference in likelihoods between the
two samples. One possibility is that infants are
indeed engaged in estimating the relative difference
in likelihood between the two samples. Other inter-
pretations of the current results are, however, also
possible, making us cautious to draw firm conclu-
sions about the nature of the information process-
ing that resulted in the reported looking patterns. It
could be that infants have a direct mapping
between the likelihood of an event and an internal
likelihood scale, and that their looking behavior is a
direct function of how strongly this internal scale is
activated. Under such a process infants do not need
to make a direct comparison between the two
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samples. Rather they respond to each event sepa-
rately with the looking time to that event being
proportional to the likelihood of the event. Another
possibility is a process that compares the magni-
tude of the two likelihoods of the events. This pro-
cess could make a comparison between the
likelihoods in either absolute or relative terms. Note
that the latter of these two would be similar to sev-
eral psychophysical processes where people can tell
two stimuli apart based on the relative magnitude
of their intensity (e.g., A is brighter than B) without
having an accurate estimate of the intensity of each
stimulus on its own (e.g., A shines with 300 lux).
Although the design of the present study cannot
tease these possibilities apart, it will be an interest-
ing a venue for future studies to address the mech-
anisms explaining how infants’ looking responses
scale to differences in likelihoods.

It is also possible that infants did not respond to
the likelihood information, per se, but rather
responded to some more low-level perceptual fea-
ture of the task. One such possibility is that infants
respond differentially to the relative likelihood of
the two samples only when the two samples both
contain a singleton. More specifically, for the rela-
tive likelihoods of 625 and 81, there is only one
item in the subsets of the small sample set that
stands out among the others (e.g., five blue balls
and one yellow ball and vice versa). Thus, it could
be argued that the unlikely subset is marked easily
by infants and draws their attention because it is
more salient. Indeed, what we observed was that
the largest relative likelihood could be discrimi-
nated by even the youngest age group. However,
the second largest relative likelihood elicited signifi-
cantly longer looking times for the unlikely subset
only in the oldest age group. If infants’ responses
were only driven by saliency, we would expect all
age groups to look longer at the unlikely subset for
the relative likelihoods of 625 and 81, not only the
18-month-olds. Moreover, if infants were looking
longer at the unlikely subset due to perceptual
features, we would expect these to dominate the
responses of the younger age groups in particular
(Althaus & Mareschal, 2012).

Another possibility is that infants relied on
some form of exemplar matching and compared
exemplars in the memory representation of the
population with those present in the sample. We
find such a strategy unlikely because it would
require infants to keep track of a (very) large num-
ber of objects. Depending on the condition, there
were 72 balls in the population and either 12 or 16

balls in total in the two samples. With respect to
the limit on the number of objects infants can
simultaneously track, it would be very challenging
for infants to track the items in the current para-
digm. It should be noted that no tracking is
required if infants extract information about the
proportion of the two types of balls. Another
possible strategy is that infants look for individually
colored balls in the two smaller containers based
on either a familiarity or novelty preference in
response to the proportions in the large container.
This “look for X-colored balls” strategy could be
used for one of two versions. In both cases, infants
would have had to identify the dominant color in
the population and would look for this color in
the samples (or the nondominant in the case of
novelty preference). In both the 1:5 and 1:3 popu-
lation ratio conditions, this should be quite a rea-
sonable task for the infant to achieve. One
possibility is then that infants allocate more look-
ing time to the sample that has more of the domi-
nant color balls (or the other way around for a
novelty preference). That is, if red is the dominant
color in the population, the infant will look more
at the sample with more red balls. If this is the
case, it is not clear why the proportion of looking
time would change as a function of the relative
likelihood of the two samples. In all four condi-
tions, there is one sample with more of the domi-
nant color balls, which predicts the same
proportion of looking time to the likely sample in
all conditions. Another possibility is that the look-
ing time is divided equally among all balls of the
dominant color. Thus, in the condition with 1:5
and 5:1 samples, the infant would allocate approxi-
mately 1/6 of the looking time to the unlikely
sample and 5/6 to the likely sample. In the other
two conditions, this would be 1/3 and 2/3 of the
time instead. This also implies that the looking
time to the two samples would be independent of
the ratio in the population. However, data
revealed that although both 6- and 12-month-olds
looked significantly more to the likely sample in
the 625 condition, they did not do so in the 81
condition. Thus, it is unlikely that the general pat-
tern of results can be explained with either an
exemplar matching or a “look for X-colored balls”
strategy. Thus, taken together, the data indicate
that it is unlikely that low-level perceptual features
are the only factors driving infants’ looking behav-
ior. A surprising but interesting finding of the cur-
rent study is that infants’ responses to relative
likelihood were modulated by the sample set size.
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More specifically, infants’ looking preferences var-
ied as a function of relative likelihood but only
when the sample set size was 6. One reason for
the differences in infants’ responses might be that
observing the large set placed more processing
demands on infants. More specifically, although
there were more items in the samples in the large
set condition, infants had the same amount of time
to process these items as they had for the small
sets. Therefore, it might be that this particular situ-
ation was too challenging for infants to compare
the likelihoods of the two samples in the large
sample set condition. However, although the lar-
ger sample set introduced more complexity to pro-
cessing the items, we expected the infants to
distinguish between events in the two conditions
with the largest relative likelihood. More specifi-
cally, previous research has indicated that infants
use either an approximate number system (Feigen-
son, Dehaene, & Spelke, 2004) or an object tracking
system (Feigenson, 2005) to process sets of objects,
and we expected that infants would engage one of
these systems at some point during the evaluation
of the samples. Both systems, however, have limi-
tations and break down if certain conditions for
the sets are not met. Accordingly, increasing the
size of the samples could have led to such condi-
tions being violated. However, we expected nei-
ther the approximate number system nor the
object tracking system to impose limitations on the
processing of the two samples. We did not expect
the approximate number system to restrict infants’
processing, as the within-sample ratio is well
within the capacity of infants of this age. Similarly,
the object tracking system should not impose limi-
tations on the processing of the items because the
number of balls of each color in each sample is
low enough to be tracked as ensembles by an
object tracking system. Although previous research
has suggested that the ability to represent proba-
bilities draws on an ability to represent numerical
magnitudes (T�egl�as et al., 2015), it is unclear
whether the limitations of an approximate number
system object tracking system or possibly both
underlie the differences in infants’ responses to the
small and large sample sets observed here.

It should also be noted that our initial data analy-
ses showed that infants lost interest in the stimuli
after approximately 3 s. Hence, we used the first 3 s
as our analysis interval. This is somewhat shorter
than the 5–11 s reported in, for example, Xu and Gar-
cia (2008), or the 10–15 s, reported by T�egl�as et al.
(2015). An explanation for this difference could be

the use of a different methodology. We used neither
a familiarization nor a habituation approach in
which the same population was shown repeatedly to
participants. It is possible that using familiariza-
tion and/or habituation creates a larger novelty
effect that attracts the infant’s attention to a larger
degree.

One limitation of the current study is that the
samplings of the balls were not performed truly at
random. The positions of the balls in the popula-
tion and samples were pseudorandomized for each
movie and the direction from which the balls
entered the scene during the presentation phase
was counterbalanced across movies. Moreover, the
balls moved at random, as they piled up inside
the box. However, these measures might not be
enough to rule out the potential influence of low-
level factors, such as the spatial arrangement of
the balls, which might have guided infants’ expec-
tations about the likelihood of events. As random
sampling is one of the main assumptions of proba-
bilistic inference, a follow-up study should control
for this factor, for example, by adding a condition
in which the box is shaken prior to sampling.

Finally, although previous research suggests
some developmental differences in probability esti-
mations by infants (Denison et al., 2013), our study
is the first to test 6-, 12-, and 18-month-old infants
with the same task in order to map out the devel-
opmental trajectory of likelihood comparisons.
Although we found some quantitative differences
between the age groups in their responses to rela-
tive likelihoods, the looking time patterns of differ-
ent age groups were very similar at a qualitative
level. Besides mapping out the scope of probability
estimations across a variety of age groups in
infancy, one important contribution of our findings
is that they corroborate previous work in the litera-
ture showing that infants as young as 6 months of
age are sensitive to the relative probability between
two events (Denison et al., 2013).

In summary, we investigated whether infants of
different ages distinguish between two events based
on their relative likelihood and whether their
responses scale to the magnitude of relative likeli-
hoods. Using eye-tracking methodology, we
showed that infants’ looking behavior varied as a
function of relative likelihood and is modulated by
the number of items they observe. In addition, we
demonstrated that younger age groups distinguish
between likely and unlikely events only when the
relative likelihood between the two events is suffi-
ciently large. In contrast, older age groups also
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have differential responses to smaller relative likeli-
hoods, although looking patterns were qualitatively
the same in all age groups. Future studies should
address the cognitive and neural systems governing
infants’ reactions to the graded complexity of rela-
tive likelihoods.

References

Althaus, N., & Mareschal, D. (2012). Using saliency maps
to separate competing processes in infant visual cogni-
tion. Child Development, 83, 1122–1128. https://doi.org/
10.1111/j.1467-8624.2012.01766.x

Aslin, R. N. (2012). Infant eyes: A window on cognitive
development. Infancy, 17, 126–140. https://doi.org/0.
1111/j.1532-7078.2011.00097.x

Benjamini, Y., & Hochberg, Y. (1995). Controlling the
false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society.
Series B (Methodological), 289–300. https://doi.org/10.
2307/2346101

Brunswik, E. (1955). Representative design and proba-
bilistic theory in a functional psychology. Psychological
Review, 62, 193–217. doi: http://dx.doi.org/10.1037/h004
7470

Clark, A. (2013). Whatever next? Predictive brains, situ-
ated agents, and the future of cognitive science. Behav-
ioral and Brain Sciences, 36, 181–204. https://doi.org/10.
1017/S0140525X12000477

Denison, S., Reed, C., & Xu, F. (2013). The emergence of
probabilistic reasoning in very young infants: Evidence
from 4.5-and 6-month-olds. Developmental Psychology,
49, 243. https://doi.org/10.1037/a0028278

Denison, S., & Xu, F. (2014). The origins of proba-
bilistic inference in human infants. Cognition, 130,
335–347. https://doi.org/10.1016/j.cognition.2013.12.
001

Feigenson, L. M. (2005). A double-dissociation in infants’
representations of object arrays. Cognition, 95, B37–B48.
https://doi.org/10.1016/j.cognition.2004.07.006

Feigenson, L. M., Dehaene, S., & Spelke, E. S. (2004). Core
systems of number. Trends in Cognitive Sciences, 8, 307–
314. https://doi.org/10.1016/j.tics.2004.05.002

Gigerenzer, G., & Murray, D. J. (1987). Cognition as intu-
itive statistics. Hillsdale, NJ: Erlbaum.

Gredeb€ack, G., Johnson, S., & von Hofsten, C. (2010). Eye
tracking in infancy research. Developmental Neuropsy-
chology, 35, 1–19. https://doi.org/10.1080/
87565640903325758

Gredeb€ack, G., & von Hofsten, C. (2007). Taking an
action perspective on infants’ object representations.
Progress in Brain Research, 164, 265–282. https://doi.
org/10.1016/S0079-6123(07)64015-1

Hoffman, L., & Rovine, M. J. (2007). Multilevel models
for the experimental psychologist: Foundations and
illustrative examples. Behavior Research Methods, 39,
101–117. https://doi.org/10.3758/BF03192848

Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2012). The
Goldilocks effect: Human infants allocate attention to
visual sequences that are neither too simple nor too
complex. PLoS ONE, 7, e36399. https://doi.org/10.
1371/journal.pone.0036399

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The
role of uncertainty in neural coding and computation.
TRENDS in Neurosciences, 27, 712–719. https://doi.org/
10.1016/j.tins.2004.10.007

Lawson, C. A., & Rakison, D. H. (2013). Expectations about
single event probabilities in the first year of life: The
influence of perceptual and statistical information.
Infancy, 18, 961–982. https://doi.org/10.1111/infa.12014

Mather, E. (2013). Novelty, attention, and challenges for
developmental psychology. Frontiers in Psychology, 4, 1–
4. https://doi.org/10.3389/fpsyg.2013.00491

Nystr€om, P., Falck-Ytter, T., & Gredeb€ack, G. (2016). The
Time Studio Project: An open source scientific work-
flow system for behavioral and brain sciences. Behavior
Research Methods, 48, 542–552. https://doi.org/10.3758/
s13428-015-0616-x

Peterson, C. R., & Beach, L. R. (1967). Man as an intuitive
statistician. Psychological Bulletin, 68, 29–46. https://doi.
org/10.1037/h0024722

Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D.; R Core
Team. (2015). nlme: Linear and nonlinear mixed effects
models. R package version 3.1-122. Retrieved from
http://CRAN.R-project.org/package=nlme

Sobel, D. M., & Kirkham, N. Z. (2006). Blickets and
babies: The development of causal reasoning in tod-
dlers and infants. Developmental Psychology, 42, 1103.
https://doi.org/10.1037/0012-1649.42.6.1103

T�egl�as, E., Girotto, V., Gonzalez, M., & Bonatti, L. L.
(2007). Intuitions of probabilities shape expectations
about the future at 12 months and beyond. Proceedings
of the National Academy of Sciences of the United States of
America, 104, 19156–19159. https://doi.org/10.1073/
pnas.0700271104

T�egl�as, E., Ibanez-Lillo, A., Costa, A., & Bonatti, L. L.
(2015). Numerical representations and intuitions of
probabilities at 12 months. Developmental Science, 18,
183–193. https://doi.org/10.1111/desc.12196

T�egl�as, E., Vul, E., Girotto, V., Gonzalez, M., Tenenbaum,
J. B., & Bonatti, L. L. (2011). Pure reasoning in 12-
month-old infants as probabilistic inference. Science, 332,
1054–1059. https://doi.org/10.1126/science.1196404

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman,
N. D. (2011). How to grow a mind: Statistics, structure,
and abstraction. Science, 331, 1279–1285. https://doi.
org/10.1126/science.1192788

Tummeltshammer, K. S., & Kirkham, N. Z. (2013). Learn-
ing to look: Probabilistic variation and noise guide
infants’ eye movements. Developmental Science, 16, 760–
771. https://doi.org/10.1111/desc.12064

Ullman, T. D., Goodman, N. D., & Tenenbaum, J. B.
(2012). Theory learning as stochastic search in the lan-
guage of thought. Cognitive Development, 27, 455–480.
https://doi.org/10.1016/j.cogdev.2012.07.005

e518 Kayhan, Gredeb€ack, and Lindskog

https://doi.org/10.1111/j.1467-8624.2012.01766.x
https://doi.org/10.1111/j.1467-8624.2012.01766.x
https://doi.org/0.1111/j.1532-7078.2011.00097.x
https://doi.org/0.1111/j.1532-7078.2011.00097.x
https://doi.org/10.2307/2346101
https://doi.org/10.2307/2346101
http://dx.doi.org/10.1037/h0047470
http://dx.doi.org/10.1037/h0047470
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1037/a0028278
https://doi.org/10.1016/j.cognition.2013.12.001
https://doi.org/10.1016/j.cognition.2013.12.001
https://doi.org/10.1016/j.cognition.2004.07.006
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1080/87565640903325758
https://doi.org/10.1080/87565640903325758
https://doi.org/10.1016/S0079-6123(07)64015-1
https://doi.org/10.1016/S0079-6123(07)64015-1
https://doi.org/10.3758/BF03192848
https://doi.org/10.1371/journal.pone.0036399
https://doi.org/10.1371/journal.pone.0036399
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1111/infa.12014
https://doi.org/10.3389/fpsyg.2013.00491
https://doi.org/10.3758/s13428-015-0616-x
https://doi.org/10.3758/s13428-015-0616-x
https://doi.org/10.1037/h0024722
https://doi.org/10.1037/h0024722
http://CRAN.R-project.org/package=nlme
https://doi.org/10.1037/0012-1649.42.6.1103
https://doi.org/10.1073/pnas.0700271104
https://doi.org/10.1073/pnas.0700271104
https://doi.org/10.1111/desc.12196
https://doi.org/10.1126/science.1196404
https://doi.org/10.1126/science.1192788
https://doi.org/10.1126/science.1192788
https://doi.org/10.1111/desc.12064
https://doi.org/10.1016/j.cogdev.2012.07.005


Waismeyer, A., Meltzoff, A. N., & Gopnik, A. (2015).
Causal learning from probabilistic events in 24-month-
olds: An action measure. Developmental Science, 18, 175–
182. https://doi.org/10.1111/desc.12208

Xu, F., & Denison, S. (2009). Statistical inference and sen-
sitivity to sampling in 11-month-old infants. Cognition,
112, 97–104. https://doi.org/10.1016/j.cognition.2009.
04.006

Xu, F., & Garcia, V. (2008). Intuitive statistics by 8-month-
old infants. Proceedings of the National Academy of
Sciences of the United States of America, 105, 5012–5015.
https://doi.org/10.1073/pnas.0704450105

Supporting Information

Additional supporting information may be found in
the online version of this article at the publisher’s
website:

Table S1. Mean and Standard Deviation (SD) of
Looking Times at the Population Box During the
First 12 s of the Stimulus Movies (Before the Sam-
ples Are Visible)

Movie S1. An example stimulus movie for the
relative likelihood of 625.

Relative Likelihood in Infants e519

https://doi.org/10.1111/desc.12208
https://doi.org/10.1016/j.cognition.2009.04.006
https://doi.org/10.1016/j.cognition.2009.04.006
https://doi.org/10.1073/pnas.0704450105

