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Research on probability judgment has traditionally emphasized that people are susceptible
to biases because they rely on “variable substitution”: the assessment of normative vari-
ables is replaced by assessment of heuristic, subjective variables. A recent proposal is that
many of these biases may rather derive from constraints on cognitive integration, where
the capacity-limited and sequential nature of controlled judgment promotes linear addi-
tive integration, in contrast to many integration rules of probability theory (Juslin, Nilsson,
& Winman, 2009). A key implication by this theory is that it should be possible to improve
peoples’ probabilistic reasoning by changing probability problems into logarithm formats
that require additive rather than multiplicative integration. Three experiments demon-
strate that recasting tasks in a way that allows people to arrive at the answers by additive
integration decreases cognitive biases, and while people can rapidly learn to produce the
correct answers in an additive formats, they have great difficulty doing so with a multipli-
cative format.
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1. Introduction Kahneman, Slovic, and Tversky (1982) for reviews). Because
people are responding to these easily accessible, but norma-
tively inappropriate, subjective variables the judgments vio-
late probability theory, producing a number of judgment
biases.

While not denying that people respond to similarity and

“Human judgment is a cognitive activity of last
resort” (K. R. Hammond)

For more than 30 years, research on human probability
judgment in cognitive psychology has been dominated by
two related claims: First, that people are often poor at
assessing probabilities and reasoning with probabilities,
and; second, that this is explained by people substituting
the hard facts of probability (e.g., frequencies and set sizes)
with subjective, “intensional”, variables that are conve-
niently available (e.g., similarity, fluency) by a process re-
ferred to as “natural assessment” (Kahneman & Frederick,
2002; see Gilovich, Griffin, and Kahneman (2002) and
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fluency when making probability judgments, we have re-
cently proposed that the biases may derive not primarily
from use of these heuristics per se, but from the pervasive
inclination for use of linear additive integration of informa-
tion (see Juslin et al., 2009; Nilsson, Winman, Juslin, &
Hansson, 2009). This argument, too, comes in two related
claims: First, because people are capacity-limited, sequen-
tial information processors, intuitive judgment tends to
implement a linear additive integration of information
(Anderson, 1981, 1996; Hogarth & Einhorn, 1992; Juslin,
Karlsson, & Olsson, 2008; Lopes, 1985, 1987; Shanteau,
1970, 1972, 1975). This also serves to link research on
probabilistic reasoning to the extensive research on linear
models in multiple cue judgment (e.g., Hammond &
Stewart, 2001; Karelaia & Hogarth, 2008).
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The second claim is that, to the extent that people base
their judgments on noisy input (e.g., small samples), linear
additive integration often yields as accurate judgments as
reliance on probability theory, which may explain why
the mind has evolved with little appreciation for many of
the normative coherence rules of probability theory (Juslin
et al., 2009). On this view, violations of probability theory
derive from processes well adapted both to the cognitive
constraints of the human mind and the requirements of
noisy real-life environments.

The purpose of this article is to test one key implication
of this theory: it should be possible to improve peoples’
probabilistic reasoning by changing probability problems
into logarithm formats that require additive rather than
multiplicative integration. In this context, we benefit from
the fact that multiplication in one metric becomes addi-
tion, if this metric is represented in terms of its logarithm.
Recasting tasks that involve multiplication, and which are
associated with classic cognitive biases like base-rate ne-
glect (Barbey and Sloman (2007), Kahneman and Tversky
(1973), Koehler (1996), and Tversky and Kahneman
(1982) for reviews) and the conjunction fallacy (Tversky
and Kahneman (1983), Costello (2009), Nilsson et al.
(2009), and Wedell and Moro (2008) for recent reviews),
to allow people to arrive at the correct answer by linear
additive integration, should thus immediately decrease
the nominal rate of these biases. Moreover, if the linear
additive integration, at least in part, arises from cognitive
constraints (Juslin et al., 2009) people should easily adapt
to produce the correct answer with a linear additive for-
mat, but have great difficulty with doing so with a multi-
plicative format.

We first describe the judgment tasks. Thereafter, to
articulate why they are not easily digested by with the hu-
man mind, a theoretical framework for human judgment is
outlined. In three experiments, we then use these insights
to control the rate of cognitive bias.

2. Multiplication with probability theory

Consider a Bayesian inference task like the medical
diagnosis problem:

The probability that a person randomly selected from
the population of all Swedes has the disease is 2%. The
probability of receiving a positive test result given that
one has the disease is 96%. The probability of receiving a
positive test result if one does not have the disease is
8%. What is the probability that a randomly selected
person that has received a positive test result has the
disease?

The posterior probability p(D|P) of Disease given a
Positive test is given by Bayes’ theorem,

p(D) xp(PID)
p(D) x p(PID) + p(D) x p(PID)’

which can be written in its ratio form,

p(DIP) =

(1)

to emphasize the need for a multiplication of base-rate
(prior odds ratio) and case evidence (likelihood ratio).!
p(D) is the base-rate of disease, p(D) the base-rate of no
disease, p(P|D) the probability of a positive test if one
has the disease (hit-rate), and p(P|D) the probability of a
positive test if one does not have the disease (false-alarm
rate). Typically, the assessed probability is much higher
than implied by Bayes’ theorem (here .20), often closer
to the hit-rate .96, commonly interpreted as a captivation
by the hit-rate at the neglect of the low base-rate (.02)
(see Eddy, 1982; Gigerenzer & Hoffrage, 1995; Koehler,
1996).

For illustration of another classic cognitive bias that is
strongly related to the requirement for multiplicative inte-
gration, consider the conjunction fallacy. According to
probability theory, the probability of a conjunction,
p(A&B), can never exceed the probability of either of the
constituent probabilities, p(A) or p(B), as is most easily seen
in the case where the two constituent events A and B are
independent, where

P(A&B) = p(A) x p(B). 3)

Because probabilities fall between 0 and 1, clearly
p(A&B) can never exceed p(A) or p(B). The integration rule
in Eq. (3) changes if it is assumed that events A and B are
dependent, but it is still multiplicative and it remains true
that p(A&B) can never exceed p(A) or p(B). People, however,
frequently violate this conjunction rule, as in the classical
Linda problem,;

Linda is 31 years old, single, outspoken, and very bright.
She majored in philosophy. As a student, she was dee-
ply concerned with issues of discrimination and social
justice and also participated in antinuclear demonstra-
tions. What is the probability of each of the following?
(A) Linda is active in the feminist movement.

(B) Linda is a bank teller.

(C) Linda is a bank teller and is active in the feminist
movement.

The conjunction fallacy is the result that the conjunc-
tion, bank teller and feminist, is generally assessed as more
likely than its component bank teller (Tversky & Kahneman,
1983).

The original explanations of base-rate neglect and the
conjunction fallacy often emphasized the representative-
ness heuristic (Kahneman et al., 1982). People were claimed
to assess probabilities by reliance on the similarity or rep-
resentativeness of the case evidence to the prototypical
members of the categories. For example, because Linda ap-
pears more representative of feminist bank tellers than of
bank tellers, the conjunction is assessed as more likely
than the conjunct. The explanations in terms of representa-
tiveness have, however, been undermined by more recent
studies showing that base-rate neglect and the conjunction
fallacy are just as common in tasks where the representa-
tiveness heuristic does not apply (e.g., the above medical

T Denoting the left-hand posterior odds ratio in Eq. (2) R, the posterior
probability p(D|P) is obtained from Eq. (2) by p(D|P) = R/(R + 1).
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diagnosis problem? or Gavanski & Roskos-Ewoldsen’s, 1991,
and Nilsson, 2008 for, “mixed versions” of the Linda prob-
lem). In the medical diagnosis problem, it has instead been
proposed that people rely on a “Fisherian algorithm”
(Gigerenzer & Hoffrage, 1995), committing “the inverse
fallacy” (Villejoubert & Mandel, 2002) essentially reporting
the likelihood probability (p(P|D)) rather than the posterior
probability (p(D|P)).

Both base-rate neglect and the conjunction fallacy can
be reduced by assessment formats that make it clearer
what information that is needed to solve the task. The
most common, but not the only, way to do so is to frame
the task in terms of natural frequencies (Gigerenzer &
Hoffrage, 1995). According to the natural frequency
hypothesis, the world reveals itself in the form of natural
frequencies and, as a result, humans are adapted to work
with natural frequencies (see also Hertwig & Gigerenzer,
1999). When tasks involve single event probabilities, as
in the medical diagnosis task or in the Linda task, people
fail because they have no tools for processing such infor-
mation. While this hypothesis can explain why the natu-
ral frequency format can be used to reduce many
cognitive illusions, it cannot explain why also other for-
mats can reduce the cognitive illusions (Barbey & Sloman,
2007).

The dual system nested set hypothesis of Barbey and
Sloman (2007) and the dual system denominator neglect
hypothesis of Reyna and colleagues (e.g., Reyna & Mills,
2007; Wolfe & Reyna, 2010) shares several assumptions.
For effective reasoning, identification of the sets of
events that are relevant to the task is crucial. If these
cannot be properly identified, judgments will be based
on the wrong information. In the medical diagnosis and
the Linda problems, identification of relevant sets and
set-relations is difficult for at least two reasons:
information is provided as single event probabilities
and the relevant sets are nested. Natural frequency is
one format that serves to simplify identification of the
relevant sets.

Both dual system hypotheses attribute cognitive biases
to the intuitive system. The difference is that they provide
different explanations of why the cognitive biases are
reduced when the relevant sets are defined. Barbey and
Sloman (2007) assume that the controlled analytical sys-
tem works with simple elementary set operations. If
essential sets can be identified, the analytical system will
get involved and judgments will be (at least fairly) cor-
rect. If sets cannot be identified, the intuitive system gets
involved and it is the tools of this system that causes illu-
sions. Reyna et al. assume that it is the intuitive system
that performs operations on the identified sets. If sets
are not identified properly, operations will be performed
on the wrong information and this is what causes

2 1t could be argued that also in the medical diagnosis task, the evidence
(a positive test) is more representative of the prototypical person with a
disease than of a prototypical person without disease. As noted previously
(Gigerenzer & Murray, 1987) this makes the application of representative-
ness almost circular (i.e., explaining that people only respond to the hit-rate
by assuming that they respond to the hit-rate). It appears redundant as
compared to characterize such a behavior in terms of a Fisherian algorithm
(Gigerenzer & Hoffrage, 1995).

cognitive illusions. The nested set hypothesis and the
denominator neglect hypothesis will not be directly
tested in the experiment below. We will, however, return
to them in Section 7.

3. Three cognitive layers of human judgment

In order to articulate the relationship between the com-
putational demands when reasoning with probability and
the inherent capabilities of the human mind we refer to
the theoretical framework in Fig. 1. As illustrated in
Fig. 1, the task is conceptualized as involving consideration
of one or several cues to make a judgment of some prop-
erty in the environment. The framework describes three
basic cognitive processes that can be used for judgment,
roughly corresponding to reasoning, intuitive judgment,
and memory.

While analytic judgment processes, corresponding to
reasoning, fall neatly into the category of “analytical think-
ing” and exemplar memory falls into (but does not ex-
haust) the category of “intuitive thinking”, as they occur
in current dual systems theories (see Darlow & Sloman,
2010; Evans, 2008; Hammond, 1996), the intuitive judg-
ments in Fig. 1 occupy a middle ground, where the cues
are attended and constrained by working memory, but
the cue integration is intuitive, arising from architectural
constraints of the mind.? In the following, we discuss these
three processes, concentrating on intuitive judgments of
probability.

3.1. Analytic judgment

In some tasks, the judgments can be made by retrieving
declarative knowledge of arithmetic facts and analytical
principles, from which deductions can be made, as far as
it is allowed by the working memory capacity. For exam-
ple, in a task that requires assessment of a conjunctive
probability p(A&B), where the independent constituent
probabilities are p(A)=.9 and p(B)=.1, the task can be
solved by retrieval of (i) the analytical rule dictating that
for independent events the probability of the conjunction
is the product of the constituents (Eq. (3)) and (ii) the
declarative fact that “.9..1=.09".Most of these facts are
likely to be culturally transmitted by education, both arith-
metic facts (e.g., about the “multiplication table”) and inte-
gration rules (e.g., multiplication for independent events,
Bayes’ theorem).

Without computers or paper and pencil, one important
source of error is the severe limits of working memory
(Cowan, 2001; Jonides et al., 2008). While people may be
able to mentally add or multiply two digits according to
analytic rules by means of controlled thought (“number
crunch”, as exemplified in the last paragraph), previous

3 Although there are similarities to the dual-systems theories reviewed
in Evans (2008) and Darlow and Sloman (2010), we would also like to
emphasize that our framework is not strongly committed to the notion of
multiple independent “systems”, as typically discussed. What we intend is
that people can engage in at least three different kinds of cognitive
processes to address a judgment task, and whether these different
processes are best conceived of as aspects of one system or as multiple
systems is open for scrutiny in future research.
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Fig. 1. Framework for human judgment suggesting three alternative cognitive processes by which one or several cues can be transformed into a judgment.

studies clearly suggest that already the explicit numeric
reasoning implied by Bayes’ theorem in Eq. (1) is beyond
the ability of most people (e.g., Eddy, 1982; Gigerenzer &
Hoffrage, 1995). If declarative facts are unknown, the task
fails to elicit their retrieval, or if the task is too complex to
be mastered by elaboration of declarative facts in working
memory, the claim is that the judge has to resort to other
cognitive processes, like controlled intuitive judgment or
exemplar memory.

3.2. Controlled intuitive judgment

As illustrated in the middle-route in Fig. 1, one judg-
ment process involves the controlled, deliberate but
intuitive consideration of cues; controlled in the sense
that it is constrained by working memory, sequential,
and that each cue is attended; intuitive in the sense that
the cue integration is not guided by an explicit analytical
rule, like Bayes’ theorem. Numerous studies suggest that
intuitive judgment is biased towards linear additive cue
integration, often as a weighted average (Anderson,
1996; Hogarth & Einhorn, 1992; Juslin et al., 2008; Lopes,
1985, 1987; Roussel, Fayol, & Barrouillet, 2002; Shanteau,
1970, 1972, 1975). Research on multiple-cue judgment,
the classic paradigm to study this process, also shows
that judgment is often a linear additive function of
the cues (Brehmer, 1994; Brunswik, 1952; Cooksey,
1996; Hammond & Stewart, 2001; Karelaia & Hogarth,
2008).

A plausible cognitive explanation for the inclination for
weighted and additive integration (Juslin et al., 2008) is
that controlled judgment involves an iterative sequential
adjustment (e.g., Denrell, 2005; Hogarth & Einhorn, 1992;
Lopes, 1985; Shanteau, 1970). At each moment, a new
piece of information (cue) is attended, which instills an
adjustment of the current estimate of the criterion into a
new estimate; then the next cue is attended, and so on. Be-
cause the previous estimate summarizes the impact of the
previous cues, and the effect of a new cue is the same
regardless of the cue values observed for the previously at-
tended cues, the adjustment naturally represents the inde-
pendent effect of each cue. Configural (or multiplicative)

effects of different cue values are therefore not naturally
represented.?

This, of course, is not to deny that people can multiply
digits (already most third-graders do), only to hypothesize
that this capacity draws not on spontaneous and intuitive
cue integration, but on elaboration in working memory of
declarative facts from long-term memory. With intuitive
controlled judgment, the judge has declarative knowledge
of the cues and their relations to the criterion, but not of
the linear additive integration rule that “emerges” from
the sequential process. In terms of dual systems theories
(Darlow & Sloman, 2010), this process occupies a middle
ground in that the process is controlled, the cues are at-
tended, and easily verbalized (as in analytic thought), but
the integration rule is implicit and not easily verbalized
(as with intuition). Because this is the process we turn to
when the answer cannot be retrieved or deduced from
analytic principles, it has aptly been referred to as “... a
cognitive activity of last resort” (p. 139, Adelman, Stewart,
& Hammond, 1975).

Consider such an updating that involves estimating a
probability p(C), based on sequential consideration of two
probabilities, p(A) and p(B). If the normative integration
rule is additive; p(C) = p(A) + p(B) (e.g., if C is the disjunc-
tion of the exclusive events A and B), sequential adjust-
ment can implement the normative rule. For example,
adding .1 after observing p(B) = .1 produces the correct re-
sult regardless of whether the previously attended p(A) is
.5 or is .9. In the case of the multiplicative rule in Eq. (2),
p(C) =p(A) - p(B), the same adjustment in response to
p(B), independently of p(A), cannot implement the rule. If
p(A) is .9., the adjustment implied by p(B) is to subtract
.81 to yield .09; if p(A) is .5, the adjustment is to subtract
45 to yield .05. Thus, sequential adjustment of the inde-
pendent effect of each cue is ill suited to capture many of
the rules of probability theory (Juslin et al., 2009).

4 Note that independence in this sense will then hold regardless of
whether the sequential adjustment process implements a simple summa-
tion model (i.e., adding up the inputs) or a weighted average model, as long
as the effect of a specific cue at a certain time, in the form of an adjustment
from a previous estimate, is the same regardless of the values of the cues
processed previously in this process of sequential adjustment.
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In belief revision tasks, where the belief is repeatedly
updated in the face of new evidence (rather than just once
as in a base-rate problem), it has long been known that
rather than relying on Bayesian integration people
successively average the “old” and “new” data (Hogarth
& Einhorn, 1992; Lopes, 1985, 1987; McKenzie, 1994;
Shanteau, 1970, 1972, 1975). In regard to the diagnosis
problem in the Introduction, the participants may first con-
sider the hit-rate, producing an initial estimate of .96.
Thereafter, they consider the base-rate (.02), adjusting
the initial estimate in the direction implied by the base-
rate (here downwards), the size of the adjustment depend-
ing on the perceived importance of the base-rate. Finally,
this second estimate is adjusted in the face of the false-
alarm rate (.08), as a function of its perceived importance.
This will not implement Bayes’ theorem, but some “norma-
tive insight” can nonetheless be indicated by appreciating
that base-rate and hit-rate co-vary positively, but false-
alarm rate negatively, with the posterior probability.

On this view, the judgment is not based on a well-
defined, generally applicable “heuristic”, but on the flexi-
ble linear weighting of different information, depending
on the judge’s causal models, the contextual information,
or on the previous feedback (Ajzen, 1977; Birnbaum &
Mellers, 1983; Fischhoff, Slovic, & Lichtenstein, 1979;
Gigerenzer, Hell, & Blank, 1988; Tversky & Kahneman,
1982). If mental number crunching of Bayes’ theorem in
its probability version (Eq. (1)) is beyond the ability of
most people (Gigerenzer & Hoffrage, 1995), it follows that
instruction and training cannot install normative integra-
tion in this task but—at best—optimize the weights used
in an intuitive additive approximation.

Applied to Linda, people may be able to assess the
probability that Linda is feminist (high) or a bank teller
(low). Because they know of no feminist bank tellers,
they infer the conjunctive probability by combining the
known probabilities. To the extent that they do not
know, or fail to retrieve, the multiplicative rule from
probability theory, they are likely to fall back on intuitive
linear additive integration. Because a weighted average
falls between the two probabilities, the result is a con-
junction error. Representativeness may be involved in
assessment of the constituent probabilities, but it’s not
the cause of the fallacy; the cause is the use of weighting
and adding rather than multiplicative probability integra-
tion. In other words, even if the constituent probabilities
are estimated in other ways, such as relative frequencies,
linear additive integration will produce a conjunction
fallacy.

In Juslin et al. (2009) we provide an extensive review of
the literature, which supports the claim that both base-
rate neglect and the conjunction fallacy may be caused
not primarily by use of the representativeness heuristic
per se, but by linear additive integration of information.
Nilsson et al. (2009) moreover report a series of new exper-
iments that test this explanation in regard to the conjunc-
tion fallacy. The experiments reported below complement
these previous studies by testing the hypothesis that these
cognitive biases should diminish if the problems are
presented in a format that allows addition rather than
multiplication.

3.3. Exemplar memory judgment

A third possibility is that the judgment is based on
memory of previous concrete judgment cases (exemplars;
Medin & Schaffer, 1978; Nosofsky & Johansen, 2000). For
example, if a participant has previously encountered a sim-
ilar medical diagnosis task (e.g., low base-rate, relatively
high hit-rate, relatively low false alarm rate), the correct
answer to the previous problem is a basis for guessing
the answer to the new problem (i.e., “Presumably a sur-
prisingly low probability also in this problem!”). Exemplar
models predict that performance should be better for re-
peated old problems seen in training than for new prob-
lems, and performance should be good within the
training range (interpolation), but poor for extrapolation
outside of the training range (see DeLosh, Busemeyer,
and McDaniel (1997) and ]Juslin, Olsson, and Olsson
(2003) for discussions). We return to exemplar memory
in the context of Experiment 2 that involves feedback
training with base-rate problems.

3.4. Overview of the experiments

In the following, Experiments 1 and 2 address base-rate
neglect with the medial diagnosis task, demonstrating that
people are inclined to use linear additive integration both
before and after instruction (Experiment 1) or extensive
feedback training (Experiment 2), but that base-rate ne-
glect is diminished and easily rectified by an additive for-
mat in log odds. In Experiment 3, we extend the
conclusions from the first experiments by showing that
also the conjunction fallacy can be nominally eliminated
by an additive logarithm format.

4. Experiment 1: Nominal elimination of base-rate
neglect

From the framework in Fig. 1 it follows that if people
cannot retrieve and use analytical principles or answers
to similar concrete problems, an important constraint on
their ability to reason with probability is the spontaneous
inclination for linear additive integration with intuitive
judgment. Is there any way in which we can test this
conjecture?

One of the basic laws of logarithms implies that the
product,

A=B-C, (4)
implies the following additive relationship in logarithms,
log(A) = log(B) + log(C). (5)

Egs. (4) and (5) essentially state the same fact, but ex-
press it in two different metrics, one that requires multipli-
cation and one that requires addition of the constituents.
One metric with the virtue of transforming Bayes’ theorem
into additive form is the logs odds ratio format:
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Positive log odds ratios favor the hypothesis, zero corre-
sponds to ambiguity and negative log odds ratios speak
against the hypothesis. Log odds run on the interval
[~o0, oc], where two examples of natural anchors back to
the more familiar odds ratio format is log odds ratio 1,
implying that the hypothesis (D) is ten times as likely as
its negation, and the log odds ratio —1, implying that the
negation (D) is ten times as likely as the hypothesis. The
log prior odds in the above medical diagnosis task is
—1.69, the log likelihood ratio is 1.08; thus the posterior
odds ratio is —.61, speaking distinctly against that the pa-
tient has the disease.

A first aim of Experiment 1 was to test the hypothesis
that performance in base-rate tasks is improved by loga-
rithm formats that require addition rather than multiplica-
tion. If this hypothesis is correct, then more base-rate
neglect should be observed when problems use a metric
that requires multiplication (probability in Eq. (1) or odds
in Eq. (2)) than when the problems use a metric that re-
quires linear additive integration (log odds in Eq. (6)).
The purpose here is not to advocate this log measure of
uncertainty as a practical method to “debias” human judg-
ments (although we return to this possibility in Section 7).
Rather, it serves as a vehicle for testing the hypothesis that
base-rate neglect derives at least in part from an inability
to integrate the information in the normative and multipli-
cative manner.’ A secondary aim was to validate the
assumption that people are spontaneously inclined to rely
on linear additive integration in the probability version of
the base-rate problem.

In Experiment 1, participants assessed the posterior
probability for the same 18 problems in each of three for-
mats, the probability format (Eq. (1)), the odds format (Eq.
(2)), and the log odds format (Eq. (6)). The probability for-
mat requires integration of three probabilities (base-rate,
hit-rate, and false-alarm rate), while the other two formats
only require integration of information about the prior
odds and the likelihood ratio. The odds and the log odds
format are thus equally complex in this respect and only
differ in the integration rule. Half of the participants only
received a Metric instruction, which introduced the metric
(probability, odds, and log odds) without information
about Bayes’ theorem. This instruction explained the inter-
val on which the metric runs and provided a few anchor
points for its interpretation (e.g., the sentences that follow
Eq. (6)). The other half received a Computational instruction,
which in addition, also explicitly presented and explained
Bayes’ theorem in its relevant form (i.e., Egs. (1), (2), (6),
depending on the format), along with a concrete computa-
tional example.

Prediction 1 was that performance with log odds should
be better than with probability and odds already without

5> As further discussed in Section 7, we refer to the decrease or
elimination of the observed biases reported in this article as “nominal”,
so signify that they need not imply a deep conceptual understanding of the
probability metrics or an ability to generatively generalize this under-
standing to novel tasks. These effects are merely the predictions if people
spontaneously and naively try to integrate information linearly and
additively.

computational instructions, because the normative inte-
gration with log odds is additive, consistently with intui-
tive integration. The most likely naive default might,
however, be a weighted mean rather than a sum, as sug-
gested by numerous studies that address other judgment
contents (e.g., Anderson, 1996; Hogarth & Einhorn, 1992;
Juslin et al., 2008; Lopes, 1985, 1987; Roussel et al.,
2002; Shanteau, 1970, 1972, 1975), and there is thus little
reason to expect perfect performance with metric instruc-
tions and log odds.

Prediction 2 was that people should find it easier to im-
prove performance with computational instructions and
log odds format than with the other two formats, because
with the log odds format the normative response is invited
both by the intuitive and the analytic route in Fig. 1. With
probability format the evidence suggests that people have
difficulty with mentally performing the computations re-
quired (Gigerenzer & Hoffrage, 1995). If this derives from
cognitive constraints (Juslin et al., 2008), it is not rectified
by instructions.

Prediction 3 was that with probability format judg-
ments should be better fitted by a linear additive model
than by a multiplicative model (with Baye$ theorem as a
special case). Most participants are unlikely to spontane-
ously retrieve knowledge of Bayes’ theorem (which likely
is unknown to most of the participating undergraduates),
and even if they do, they will have extreme
difficulty with mentally performing these computations
(Gigerenzer & Hoffrage, 1995). With metric instruction
we expect the participants to rely on some simple non-
integrative strategy, like reporting the hit-rate (the
“Fisherian algorithm”, Gigerenzer and Hoffrage), or
some rudimentary, idiosyncratic linear additive integra-
tion, reflecting, at least partial, understanding that
also the base-rate and (or) the false alarm rate are
relevant.

Prediction 4 is that also with computational instruc-
tion, and thus explicit knowledge about Bayes’ theorem,
the participants should be unable to implement Bayes’
theorem. People should find it easy to improve their
judgments by adapting their linear weighting to approx-
imate Bayes’ theorem, but they should be reluctant or
unable to shift to multiplication. The instruction should
accordingly not result in the best fit for a multiplicative
model, but in the best fit of a linear additive model with
weights converging on those that allow approximation of
Bayes’ theorem. Assuming that multiplication of two dig-
its according to a rule is within the working memory
constraints of most participants, Fig. 1 is more ambigu-
ous with regard to the cognitive processes with the odds
format. With the metric instructions it seems reasonable
to expect that the participants should fall back on the
default of intuitive linear integration. With computa-
tional instruction, however, they could either continue
with this intuitive integration or use the analytic process
implied by the instruction (e.g., use the analytic rule that
“normative integration is to multiply prior and likelihood
odds”, and if these digits are 3 and 7, retrieve that
“3 x 7=21"). In contrast to the probability format, ana-
lytic number crunching seems to be well in reach with
the odds format.
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4.1. Methods

4.1.1. Participants

Thirty undergraduate students participated (18 female
and 12 male; average age = 25). As compensation, partici-
pants received either course credits or a movie ticket.

4.1.2. Apparatus and materials

Stimuli and instructions were included in booklets.

The base-rate problems concerned unspecified dis-
eases (one for each problem) and included information
concerning the base-rate of the disease in the Swedish
population, the hit rate of the test, and the false-alarm rate
of the test. The base-rate was randomly sampled from a
uniform distribution between 0 and .5 (sample mean
.236 across the 18 problems), the hit-rate was randomly
sampled from a uniform distribution between .5 and 1
(sample mean .742), and the false-alarm rate was ran-
domly sampled from a uniform distribution between 0
and .5 (sample mean .240). That is, the problems were
constrained to involve relatively rare diseases, relatively
high hit-rates, and relatively low false-alarm rates, as in
a diagnostic test.

There were three versions of each problem, differing
only in the way the base-rate, the hit rate, and the false
alarm rate were described. The probability (percentage)
version was:

The probability that a person randomly sampled from
the population of all Swedes has the disease is 1%. The
probability of a positive test result if you have the dis-
ease is 90%. The probability of a positive test result if
you do not have the disease is 30%.

What is the probability that a randomly sampled person
from the population that receives a positive test result
has the disease? %

The odds ratio version presented a prior odds ratio and
a likelihood ratio:

The prior odds ratio that a person randomly sampled
from the population of all Swedes has the disease is 1/
100. The likelihood odds ratio of obtaining a positive
result if you have the disease, relative to if you do not
have the disease is 3/1.

What is the odds ratio that a randomly sampled person
from the population that receives a positive test result
has the disease?

The log odds ratio presented a log prior odds ratio and a
log likelihood ratio:

The log prior odds ratio that a person randomly sam-
pled from the population of all Swedes has the disease
is —2. The log likelihood odds ratio of obtaining a posi-
tive result if you have the disease, relative to if you do
not have the disease is .48.

What is the log odds ratio that a randomly sampled per-
son from the population that receives a positive test
result has the disease?

Formally, there accordingly were 18 base-rate prob-
lems, each appearing once as a probability version, once
as an odds version, and once as a log odds version. We as-
sumed that independently of version, problems that in-
cluded numbers with few decimals and/or even numbers
such as .50 and 1.50 rather than .53 and 1.48 would be eas-
ier to solve. To control for this aspect, six problems includ-
ing “simple” numbers were created for each format
(probability, odds, and log odds). Hence, among the 18
problems there were six that produced probability ver-
sions with “simple” numbers, six that produced odds ver-
sions with “simple” numbers, and six that produced log
odds versions with “simple” numbers.

In regard to each of the three formats (probability, odds,
log odds), the participants either received a metric or a
computational instruction. Each of the three metric instruc-
tions briefly explained one of the metrics by describing the
formal relationship between the metric and probability
(for odds ratios and log odds ratios) and by translating
three salient reference points back to the more familiar
probability format and into their approximate verbal
meaning (i.e., “very unlikely”, “even chance”, and “very
likely”). In addition, the direction of the metric was ex-
plained. The instruction with the probability format thus
(and probably redundantly) explained the meaning of
“1%”, “50%”, and “99%” probability and that, the more the
probability exceeded 50%, the higher the probability of
the hypothesis relative to its negation and the more the
probability fell below 50%, the higher the probability of
the negation relative to the hypothesis. The metric instruc-
tion for odds ratios explained the meaning of odds ratios
“1/100”, “1/1”, and “100/1”, by translating them into their
approximate probabilities. It was stated that the more the
odds ratio exceeded 1/1, the higher the probability of the
hypothesis relative to its negation and the more the odds
ratio fell below 1/1, the higher the probability of the nega-
tion relative to the hypothesis.

The metric instruction for log odds ratios explained the
meaning of log odds ratios “—2", “0”, and “2”, by translat-
ing them into their corresponding odds ratios and approx-
imate probabilities. It was stated that the more the log
odds ratio exceeded 0, the higher the probability of the
hypothesis relative to its negation and the more the log
odds ratio fell below 0, the higher the probability of the
negation relative to the hypothesis.

In each case, it was emphasized that the reference
points mentioned were just intended as examples and
that the assessed value could take any value admissible
with the metric in question (i.e., identified as [O, 1],
[0, oc], and [—oo, o], depending on the condition). To en-
sure that the participants had some grasp of the metric
in question, the three instructions also included five sim-
ple multiple choice questions that required the partici-
pants to translate the metric in question back to the
more familiar probability format. For example, the odds
ratio metric instructions included a question on whether
an odds ratio of 1 indicated that the likelihood of disease
given a positive test result was high, low, or intermedi-
ate. If the five questions were not correctly answered,
the participants were asked to read the instruction once
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more. Virtually all participants answered these simple
questions correctly the first time (i.e., “simple” in the
sense that the answers were explicitly stated on the pre-
vious page of the instruction, which they were reading),
and all got it right the second time.

The three computational instructions included the metric
instruction plus an in depth instruction on how to use
Bayes’ theorem to solve the probability versions (the prob-
ability computational instruction), the odds ratio versions
(the odds ratio computational instruction), or the log odds
ratio versions (the log odds ratio computational instruc-
tion). The instructions explained the meaning of the com-
ponents of the problem (e.g., the base-rate, the hit rate, &
the false alarm rate in the probability versions) and pro-
vided a numerical example of how they are combined in
Bayes’ theorem (as modified to suit the metric in question).
In all conditions, the instructions remained available to the
participants throughout the condition in question. The par-
ticipants were not allowed to make computations with pa-
per and pencil.

There were two types of booklets. The metric booklet
included 54 problems, 18 probability, 18 odds ratio, and
18 log odds ratio problems. Each set of 18 problems was
preceded by the relevant metric instructions. The compu-
tational booklet included the same 54 problems, but
each set of 18 problems was preceded by a relevant
computational instruction.

4.1.3. Design and procedure

The experiment was a 2x3 mixed design with instruc-
tions (metric vs. computational; between subjects) and
version (probability, odds ratio, and log odds ratio; within
subject) as independent variables. All participants were
tested individually. At arrival, participants were handed a
booklet. Half of the participants were handed the metric
booklet and the other half were handed the computational
booklet. All participants were asked to solve all 54 prob-
lems. One third of the participants were asked to start with
the probability versions and end with the log odds ratio
versions, one third to start with the odds ratio versions
and end with the probability versions, and one third to
start with the log odds ratio versions and end with the
odds ratio versions. The experiment lasted 20-40 min.

4.2. Results

We addressed the data by two kinds of analysis. First,
we analyzed performance with Mean Absolute Error
(MAE) from the “correct” posterior probability and report
the observed bias relative to Bayes’ theorem. We analyze
performance measures collapsed across both of the
instruction conditions, then separately for the Metric and
the Computational instructions. Before analysis, for the
sake of comparability the data in the odds and log odds
conditions were transformed into probability. Second, be-
cause a key-hypothesis is that in the original (probability)
base-rate tasks the participants spontaneously rely on lin-
ear additive integration, we compare a multiplicative and a
linear additive model with respect to these data.

4.3. Performance: effects of format and instruction

Collapsed across both of the instruction conditions,
MAE was higher (poorer) with the probability version than
with the other two versions (both p<.01 by Wilcoxon
test). The odds version produced significantly higher
(poorer) MAE than the log odds version (Wilcoxon;
T=32,Z=4.13,p<.001). As illustrated in Fig. 2, for all ver-
sions MAE decreased with computational instruction
(Mann-Whitney; probability: U=26, Z=3.57, p<.001;
odds: U=27, Z=3.53, p<.001; log odds: U=13, Z=4.11,
p <.001). As predicted, collapsed across instruction condi-
tions, performance was best with logs odds and with all
three assessment formats the performance improved sig-
nificantly with computational instructions.

4.4. Performance: metric instructions

MAE in the metric instruction conditions are presented
in Fig. 2A, also showing the lowest (best) MAE that is
attainable with optimal linear weighting of the statistics
stated in the problem. This best linear MAE was based on
regression models with unbounded linear coefficients
and no intercept based on the 18 problems, where the dig-
its stated in the problem (in a given format) are indepen-
dent variables and the correct response (in the same
format) as the dependent variable. With metric instruc-
tions the participants were briefly introduced to the metric
involved (probability, odds ratio, and log odds ratio), but
they received no information on how the components
should normatively be integrated into a posterior
probability.

The probability versions produced significantly higher
(poorer) MAE than the odds versions (Wilcoxon; T =25,
Z=1.99, p=.034) and the log odds versions (Wilcoxon,;
T=6,Z=3.07, p=.002). The odds format produced signifi-
cantly higher (poorer) MAE than the log odds format
(Wilcoxon; T=20, Z=2.27, p=.023). Performance with
probability and log odds is distinctly poorer than the best
performance allowed by linear additive integration (the
dotted line in Fig. 2A). Performance with odds is slightly
better than expected from optimal linear additive integra-
tion, weakly suggestive of multiplicative integration.

Across the 18 problems, the median hit-rate was .75
and the median posterior probability was .40. If the partic-
ipants ignore the base-rates and only use the hit-rates the
median assessed posterior probability should be close to
.75, while if they implemented the Bayesian solution their
median assessed posterior probability should be close to
.40. The median of the median individual judgment across
the 18 problems are presented in Fig. 2B. In Fig. 2B, we see
that the “base-rate neglect” with probability format (a
median judgment of .70) has almost disappeared with
the log odds format (.47).° The percentage of problems

6 As expected, the deviations from the normative response observed with
metric instruction and log odds format were suggestive of most partici-
pants initially addressing the task with something like a weighted mean
rather than a sum, an error that was rectified when the participants were
given computational instructions.
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Fig. 2. Experiment 1: Panel A: The median Mean Absolute Error (MAE) between judgment and posterior probability with interquartile index in the Metric
instruction condition; Panel B: The median judgment with interquartile index in the Metric instruction condition; Panel C: The median MAE between
judgment and posterior probability with interquartile index in the computational instruction condition; Panel D: The median judgment with interquartile
index in the Computational instruction condition. In Panels A and C the dotted line represents the lowest MAE achievable by linear additive integration of
the figures stated in the problems (see the main text for further explanation). In Panels B and D “Hit-rate” refers to the median predicted probability
judgment if the participants respond only to the hit-rate, and “Bayes” to the probability judgment predicted if the participants use Bayes’ theorem.

where the responses were exactly correct (rounded to two
decimals in probability format) was 1% for the probability,
20% for the odds, and 21% for the log odds format.

4.5. Performance: computational instructions

The MAE in the Computational instruction condition is
presented in Fig. 2C. Computational instructions in addi-
tion explained how the components should be integrated
into a posterior probability according to Bayes’ theorem
(by multiplication with probabilities and odds, by summa-
tion with log odds), and this was concretely illustrated
with a computational example. The probability format pro-
duced significantly higher (poorer) MAE than the other for-
mats (p <.01 by Wilcoxon test). The odds format produced

significantly higher (poorer) MAE than the log odds format
(Wilcoxon; T=15,Z=3.41, p=.001).

As predicted, with a probability format performance was
distinctly poorer than the level defined by optimized linear
weights (the dotted lines in Fig. 2C). With the odds format,
the MAE falls in between the MAE predicted by optimal lin-
ear weighting (dotted line) and the MAE implied by norma-
tive integration (MAE =0), suggesting partial, but only
partial, ability to implement the multiplicative rule given
in the Computational instruction. With the log odds format
performance is virtually perfect. Fig. 2D illustrates that
there is still some “base-rate neglect” with the other for-
mats, but it has been eliminated with logs odds (median
.40). The responses were exactly correct (rounded to two
decimals in probability format) for 3% of the probability
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versions, 53% of the odds versions, and 85% for the log odds
versions.

4.6. Model fit for the probability format

Two regression models were fitted to the judgments py,
of posterior probabilities in the condition with probability
format. The first was a weighted multiplicative model,

log <ﬂ) —a+prv10g< Pp;) > + bir

1_ﬁpo 1- pr
-lo (&)-‘v—g, 7
A (7)

fa

where a is an intercept, bpy is the weight assigned to the
prior odds ratio and by is the weight attached to the like-
lihood ratio. The special case of this multiplicative model
with parameters a = 0, bpg = 1, and big = 1 is Bayes’ theorem
in log odds ratio form. If participants are able to perform
multiplicative integration and approximate Bayes’ theo-
rem, they should be well described by Eq. (7). Note, how-
ever, that the free parameters allow the model also to
capture various aberrations and idiosyncrasies in a process
of multiplicative integration.

The second model is the linear additive model based di-
rectly on the three stated probabilities, but with fitted lin-
ear coefficients,

Ppo = bpr - Ppr + br - Py + bra - Ppy + €, (8)

where by, is the weight assigned to the stated base-rate py,
by is the weight assigned to the stated hit-rate py,, and by,
is the weight assigned to the stated false-alarm rate p,. In
order to limit the number of free parameters and to make
the two models as comparable in flexibility as possible, in
Eq. (8) we refrained from introducing an intercept.” Eq. (7)
and (8) thus define two regression models, each with three
free parameters fitted to the judgment data.

To evaluate the fit of the models and to investigate aver-
age linear parameters both models were fitted separately
for each individual participant. The linear additive model
provides better fit® than the multiplicative model across
both instruction conditions (median R for the linear addi-
tive model =.97; median R for the multiplicative model =
.75: Wilcoxon; T=0, Z=4.78, p<.001), as well as sepa-
rately in the Metric condition (median R for the linear addi-
tive model =.99; median R for the multiplicative model =
.63: Wilcoxon; T=0, Z=3.41, p<.001) and the Computa-
tional condition (median R for the linear additive

7 Although the constraint not to include an intercept was primarily
motivated by the ambition to keep the number of free parameters equal we
note that it is consistent with the observation that people often sponta-
neously use a weighted average (Anderson, 1996), which has been observed
also in probability tasks (Nilsson et al., 2009). The fit of the linear additive
model can of course only be further improved by adding an intercept, and
in that sense the decision is conservative with regard to the observed
superiority of the linear additive model.

8 Because the regression models are applied to prediction of very
different metrics, log odds ratios in the multiplicative model and proba-
bilities in the linear additive models, evaluating the fit in terms of
prediction error is difficult. We therefore relied on the multiple correlation
R to evaluate the fit of the models.

model =.95; median R for the multiplicative model=.77:
Wilcoxon; T=23, Z=3.41, p =<.001).°

The median number of significant predictors was 2, sug-
gesting that participants typically integrated several cues.
There were however large individual differences and for
40% of the participants only one predictor was statistically
significant beyond .05 (although the interpretation of non-
significance is complicated by the limited power in the
analysis of the individual participants). Among participants
with only one significant predictor, there were four partic-
ipants (13% of all participants) that only used the hit-rate
(i.e., a “Fisherian algorithm”, Gigerenzer & Hoffrage,
1995). In the Metric condition, on average 35% of the
judgments were numerically identical either to the stated
hit-rate, base-rate, or false-alarm rate, thus suggesting a
non-integrating strategy merely reporting one of the digits.
In the Computational condition this percentage decreased
to 6% (Mann-Whitney: U =54, Z=2.41, p=016).

As shown in Fig. 2A and C, performance was better in
the computational probability condition than in the metric
probability condition. Fig. 3, which presents the average
parameters of the linear additive model fitted to individual
data (95% confidence intervals), illustrates how this
improvement was obtained. In the Metric condition, with-
out instruction about Bayes’ theorem, on average the judg-
ment was close to a weighted mean of the base-rate and
the hit-rate, with the hit-rate receiving most weight. How-
ever, on average they do not assign a non-zero weight to
the false-alarm rate. As we have seen, the computational
instruction informing the participants about Bayes’ theo-
rem does not seem to instigate a shift to the appropriate
multiplicative model. Instead, they adopt linear parame-
ters that allow the linear additive model to better approx-
imate Bayes’ theorem, which includes adopting a negative
weight for false-alarm rate. In sum: the linear additive
model provided better fit than the generalized multiplica-
tive model with both instructions and the improved

9 When the regression models are fitted to individual participants, both
models have three free parameters that are fitted to 18 data points, which
actualizes the potential problem of statistical overfit. In order to validate
the conclusions from the regression modeling of individual participants we
therefore also analyzed the predictions by two corresponding a priori
(parameter-free) models. We computed the correlation between the
participant’s judgments and Bayes’ theorem (Eq. (1)) and the corresponding
correlation with the best linear additive approximation to Bayes’ theorem.
The best linear approximation was estimated for the case where the base-
rate is uniformly distributed between 0 and .5, where the hit-rate is
uniformly distributed between .5 and 1, and the false-alarm rate is
uniformly distributed between 0 and .5, as relevant to our medical
diagnosis tasks. The best approximate linear model is, ppo =.251+
1.303 - py + 252 - py, — 1.406 - p,, where ppr, pnr, and pg, are the base-
rates, the hit-rates, and the false-alarm rates, respectively, stated in the
problems. In the Metric instruction condition the mean correlation with
Bayes’ theorem was .375 and the mean correlation with the linear additive
approximation was .477 (Wilcoxon; T=0, Z=3.41, p<.001). In the
Computational instruction condition the mean correlation with Bayes’
theorem was .656 and the mean correlation with the linear additive
approximation was .694 (Wilcoxon; T=21,Z = 2.22, p =.027). Although the
differences were small - not surprising given that the linear model is an
approximation to Bayes’ theorem (r=.95) - the differences consistently
favored the linear additive model over Bayes’ theorem. Note, however, that
the best linear approximation is not a good description of the participants
in the Metric condition, which in contrast to the best linear additive
approximation give no significant negative weight to false alarms (see
Fig. 3).



258 P. Juslin et al./ Cognition 120 (2011) 248-267

Linear Coefficients: Probabilities

1.0
0.8
0.6
0.4

0.2

0.0 fomm e i___,

Coefficient

-0.4 “®_ Weight for base-rate
@ Weight for hit-rate
-0.6 "M Weight for false-alarm

-1.0

Metric

Computational

Fig. 3. Mean linear coefficients with 95%. Confidence intervals (N = 15) for the linear additive models in the conditions with a probability assessment

format.

performance with computational instructions is explained,
not by a shift to Bayes’ theorem, but by adapting the linear
additive model to make it a better approximation of Bayes’
theorem.

4.7. Discussion

As predicted, the use of a log odds format immediately
improved performance (Prediction 1). Already without
computational instructions, performance with the log odds
format was significantly better than performance with the
other two formats. That the log odds format yielded signif-
icantly better performance than the odds format, where
both formats only require integration of two numbers, sug-
gests that the integration per se plays a key role for this dif-
ference. Moreover, the better performance with odds than
probabilities confirms that the analytic number crunching
of two digits with odds is within the scope of working
memory limitations, in contrast to the multiplication with
a probability format. Only with odds, performance ex-
ceeded what is allowed by linear additive integration.

Only the log odds format allowed the participants to
“perfect” their performance (Prediction 2). When the prob-
lems were framed in way that makes Bayes’ theorem addi-
tive (log odds ratios), just a few minutes of tutoring in the
Computational instruction condition was sufficient to
nominally eliminate the base-rate neglect in all of the par-
ticipants. This was in stark contrast to how the computa-
tional instructions affected performance with the other
two formats. Even after computational instruction, perfor-
mance with the probability format was no better than it
was already with metric instruction on the log odds ratio
format.

The participants with probability assessment format
were much better fitted by a linear additive model than
by a multiplicative model, with Bayes’ theorem as a special
case (Prediction 3). Most of the participants integrated

several cues, typically the hit-rate and the base-rate in
the Metric condition, while in addition including the
false-alarm rate in the Computational condition. A minor-
ity in the Metric condition, however, relied on a non-
integrative strategy, responding with the hit-rate (“Fisherian
algorithm”, Gigerenzer & Hoffrage, 1995).

The computational instructions improved accuracy also
with the probability format. However, the instructions did
so by helping the participants to adjust their weights
rather than by enabling them to use Baye$ theorem (Pre-
diction 4). As predicted, a brief instruction was sufficient
for the participants to flexibly shift their weights to better
approximate the output of Bayes’ theorem. Consistently
with the original notion of a base-rate neglect bias, more
weight was spontaneously assigned to the hit-rate than
to the base-rate. Somewhat surprisingly, the only informa-
tion that was truly ignored by the participants was the
false-alarm rate. Relying on a “Fisherian algorithm”
(Gigerenzer & Hoffrage, 1995), committing what has been
called “the inverse fallacy” (Villejoubert & Mandel, 2002),
implies ignoring both base-rate and false-alarm rate. That
people respond both to the base-rate and the hit-rate,
but not to the false alarm rate is not captured by these no-
tions. Interestingly, it is consistent with a literature sug-
gesting that people have limited ability to consider the
implications of the alternative hypotheses in hypothesis
testing, so called “pseudo-diagnosticity” (Ofir, 1988).

5. Experiment 2: Learning Bayes’ theorem from
feedback

The results from Experiment 1 suggest that people have
difficulties in adopting a multiplicative strategy for inte-
grating information even after explicit instructions on
how to do so. The aim of Experiment 2 was to investigate
if extensive outcome feedback is sufficient to make people
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adopt multiplicative information integration in a base-rate
task.

As in Experiment 1, participants judged the posterior
probability that a person has a disease from a base rate, a
hit rate and a false alarm rate (the probability condition),
from a prior odds and a likelihood ratio (the odds condi-
tion), or from a log prior odds and a log odds ratio (the
log odds condition). In Experiment 2 people train with out-
come feedback for similar diagnosis problems. Therefore,
the third route in Fig. 1, exemplar memory (Medin &
Schaffer, 1978; Nosofsky & Johansen, 2000), also becomes
a plausible way to make the judgments (i.e., by retrieving
the posterior probability of a previous problem with simi-
lar base-rate, hit-rate, and false alarm rate). To investigate
this possibility, at test participants were required to make
judgments of posterior probabilities outside of the training
range (i.e., to extrapolate). Exemplar models predict that,
because the judgments are a weighted average of the pos-
terior probabilities observed in training, performance
should be better for repeated old problems seen in training
than for new problems, and performance should be good
within the training range (interpolation), but poor for
extrapolation outside of the training range (see Delosh
et al,, 1997; Juslin et al., 2003 for discussions). However,
if they rely on information integration based on some ab-
stract rule, such as Bayes’ theorem or linear additive inte-
gration, which allows the same performance for old,
interpolation, and extrapolation problems, there should
be no such difference in the performance. Assuming that
participants use linear additive integration, we predicted
no such old-new differences.

The predictions were otherwise similar to in Experiment
1. Because people spontaneously integrate information
additively they will perform better with the log odds format
and will find it much easier to learn to make accurate judg-
ments with this format. The participants in the probability
condition should continue to use an additive strategy even
after extensive feedback, hence performing poorly, while
participants in the log odds condition should rapidly learn
to make accurate judgments. Data from the probability
condition should moreover be better fitted by a linear addi-
tive model than by a multiplicative model. The participants
in Experiment 2 are given repeated feedback and should,
therefore, be better able to optimize the weights in the lin-
ear additive model. As a result, we expected that they
should be able to improve their performance to the maxi-
mum level allowed by linear additive integration, but not
be able to improve their performance beyond this level.

5.1. Methods

5.1.1. Participants

Thirty-six undergraduate students at Uppsala Univer-
sity, 17 male and 19 female (average age 24.8 years), re-
ceived a movie voucher or course credits for participating.

5.1.2. Procedure and material

Tasks, instructions, and procedures were similar to in
Experiment 1, with the following qualifications. The partic-
ipants were randomized into three conditions; the proba-
bility condition, the odds condition and the log odds

condition. They were given written instructions corre-
sponding to the metric instructions in Experiment 1.The
problems were generated by randomly sampling a base-
rate from a uniform distribution between 0 and .5, a hit-
rate from a uniform distribution between .5 and 1, and a
false alarm-rate from a uniform distribution between 0
and .5, as appropriate for a medical diagnosis task. The
problems in the odds and log odds conditions were gener-
ated by transformation into the relevant format. The prob-
lems were presented one by one on the computer screen.
After every problem, the participant was presented with
the correct posterior probability expressed in the relevant
format. In all conditions, the task was to improve the judg-
ments by help of the feedback. In the training phase, par-
ticipants received 180 trials, and in a test-phase a further
60 trials without feedback. Throughout the training phase
the problems were constrained to only produce posterior
probabilities within the interval .05-.95. The test-phase
consisted of three sorts of problems; 20 old problems that
were repeated from the training phase, 20 new (interpola-
tion) problems within the training range, and 20 new prob-
lems outside of the training range .05-.95 (i.e., with lower
posterior than .05 or higher than .95).

5.2. Results

5.2.1. Learning performance

As in Experiment 1, all data was transformed to the 0-1
probability scale. Performance during the training phase in
terms of Mean Absolute Error (MAE) from the posterior
probability is summarized in Fig. 4. Dotted horizontal lines
represent the minimum MAE achievable with linear addi-
tive integration (i.e., the MAE that would have been
reached if optimal weights, given the stimuli material used
in Experiment 2, had been used). First, there is learning in
all three conditions (i.e., MAE decreases over the training
phase). Second, participants in the log odds condition reach
more or less perfect performance already in the second
block (Fig. 4C). Third, while the MAE in the probability con-
dition quickly stabilizes at the minimum level achievable
with linear additive integration (Fig. 4C), the MAE in the
odds condition stabilizes in between the minimum level
achievable with linear additive integration (the dotted
line) and normative integration (MAE = 0). As in Experi-
ment 1, this suggests that participants in the probability
condition continue to use intuitive additive integration,
but that many of the participants in the odds condition
were able to discover the multiplicative rule from the feed-
back, which is implemented with partial success. A
Kruskal-Wallis ANOVA by ranks on the judgments made
in the training phase showed a significant effect of condi-
tion on MAE (H = 14.15, n = 36, p <.001). The log odds con-
dition has a smaller (better) median MAE (Md = .023) than
the odds (Md=.051) and probability (Md=.138) condi-
tions. Testing the pair-wise differences with three Mann-
Whitney U-tests revealed all pair-wise differences to be
significant (all p <.05).

5.2.2. Test performance
A Kruskal-test based on the MAE from the test phase re-
vealed a significant effect (H=19.60, n = 36, p <.001) with
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the log odds condition having smaller (better) median MAE (Md = .137) conditions (Fig. 5A). Mann-Whitney U-tests re-
(Md =.012) than the odds (Md =.021) and the probability vealed that all three pair-wise differences were statistically
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significant (all p <.05). Because in this experiment the
base-rate was sampled from the entire interval [0, 1] and
extrapolation items required extreme posterior probabili-
ties, the median posterior in the test phase of is actually
higher than the hit-rate (see Fig. 5B), in contrast to what
has been common in most previous experiments (and in
Experiment 1 of this article). A useful property of this data
set is that it demonstrates that the improvement with log
odds is not merely the result of a general tendency to pro-
duce less extreme judgments (as might be argued in Exper-
iment 1), but that it truly tracks the posterior probabilities.

During the test phase the participants made judgments
on items that they had experienced during training (old)
and items that that they had not experienced during train-
ing (new). A Wilcoxon matched pairs test showed no sig-
nificant difference in the MAE between new and old
items (T =303, Z=.47, p=.64). The test items were either
within the range of the items in the training phase (inter-
polation) or outside of the range of the training items
(extrapolation). A Wilcoxon matched pairs test showed
no significant difference in the MAE between interpolation
and extrapolation items (T =292, Z= .64, p =.52). As illus-
trated in Fig. 5B, in the test phase participants in the Log
odds condition gave judgments very close to what would
be expected from Bayes’ theorem, while the judgments in
the probability format were closer to the stated hit rate.
The percentage of problems where the responses were ex-
actly correct (rounded to two decimals in probability for-
mat) was 4% for the probability, 35% for the odds, and
73% for the log odds format.

Model Fit The models described in Eq. (7) and (8) were
fitted to the test phase data in the probability condition.
When fitted individually for each participant the linear
additive model provided better fit than a multiplicative
model (median R for the linear additive model = .98,

median R for the multiplicative model =.86: Wilcoxon;
T=0, Z=3.06, p=0.002). Among the 12 participants in
the probability condition 10 (83%) had significant beta-
weights for all three components, one (8%) had two signif-
icant predictors and 1 (8%) had one significant predictor.
On average in training 5.2% of the judgments were numer-
ically identical either to the hit-rate, base-rate, or
false-alarm rate, suggesting a non-integrating strategy of
reporting one of the stated digits. In the test phase, the per-
centage was 3.8 and all came from two participants. Most
participants apparently integrated the cues into a
judgment.

In Experiment 1, the “naive” participants in the Metric
condition that received no instruction on Bayes’ theorem
typically weighted the base-rate and the hit-rate in their
judgments, but ignored the false-alarm rate. To explore
these patterns further, the linear additive model (Eq. (8))
was fitted to individual data from the learning phase of
Experiment 2. In this analysis, the learning phase was di-
vided into six blocks of 30 trials and the model was fitted
separately for each block. The results are shown in Fig. 6.
The best fitting coefficients for the linear additive model in
the first block replicated the data from the Metric condition
in Experiment 1, responding significantly to the base-rate
and the hit-rate, butignoring the false alarm rate. With feed-
back the participants however adopted the weights to better
approximate Bayes’ theorem, which lead to the improved
performance observed in Fig. 4A.

5.3. Discussion

In Experiment 2, participants in the probability condition
performed relatively poorly, even after extensive feedback.
Interestingly, their performance did improve as a function
of training, but never exceeded the maximum level that
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was obtainable with the linear additive model. Hence it
seems that feedback is not sufficient for participants to learn
to make judgments that are in accordance with Bayes’ theo-
rem when the information is presented in a probability for-
mat. However, when information was presented in a format
requiring additive integration, that is, the log odds format,
feedback rapidly enabled perfect performance.

In addition, the results of Experiment 2 show that par-
ticipants in the probability condition use a judgment strat-
egy that is best described by a linear additive model and
that they do so even after having had extensive feedback
on their judgments. Experiment 1 showed that participants
had difficulties with using Bayes’ theorem even after expli-
cit instructions on how to do so (Computational instruc-
tion). The results from Experiment 2 extend this finding
to outcome feedback. That is, even with extensive feedback
participants have difficulties with integrating probabilities
according to Bayes’ theorem. There was no evidence for
old-new differences that would suggest exemplar memory
judgments.

As shown in Fig. 4, the participants in the odds condi-
tion performed clearly better than what could be expected
from linear additive integration, suggesting that they were
able to induce the normative multiplicative rule from the
outcome feedback and, and least in part, to successfully
implement it. These results essentially replicate those from
the Computational condition in Experiment 1. However, as
shown by the difference in performance between the odds
condition and the log odds condition, the two conditions
where the participants were required to integrate two
pieces of information, it was substantially easier to detect
and implement an additive rule than to detect and imple-
ment a multiplicative rule.

6. Experiment 3: Nominal elimination of the
conjunction fallacy

Experiments 1 and 2 suggest that participants integrate
the components in the probability version of the medical

diagnosis task by linear additive integration, and that this
is a key constraint on their ability to compute the correct
posterior probability. In contrast, a few minutes of tutoring
on how to solve the log odds version of the medical diag-
nosis task was sufficient to make all of the participants per-
form almost perfectly. This conclusion could, however, be
restricted to these medical diagnosis tasks and not apply
to other multiplicative probability problems. Experiment
3 attempted to replicate part of these results with another
of the classic probability rules, the computational rule for
conjunctive probabilities. This study complements our pre-
vious studies on the conjunction fallacy (e.g., Nilsson et al.,
2009) by attempting to control the magnitude of the bias
with different assessment formats.

With log probability the conjunction rule for indepen-
dent events is additive,

log(p(A&B)) = log(p(A)) + log(p(B)). 9)

Log probabilities run on the interval [—oo, 0]. Two exam-
ples of natural anchors back to probability is log probabil-
ity —1 (probability .1) and log probability —2 (probability
.01). Log probabilities can be seen as a measure ranging
from values of extreme “unlikelihood” (e.g., —3) to cer-
tainty (0). If the judged probability that Linda is a feminist
is .9, the log probability is —.05. If the judged probability
that Linda is a bank teller is .1, the log probability is —.1.
Making the dubious assumption that these possibilities
are independent, the log probability for the conjunction
is —.15, suggesting that the conjunction is more “unlikely”.

In Experiment 3 the participants were provided with
the stated probabilities of two events and were required
to estimate the probability of the conjunction, given the
assumption that the events are independent. Half of the
participants assessed the problems in a probability format,
in regard to which the multiplicative integration in Eq.
(3) is appropriate; half assessed the problems in a log prob-
ability format, according to which the additive integration
in Eq. (9) is appropriate. For simplicity, all participants first
assessed the problems based on a metric instruction, and
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then received them a second time with a computational
instruction. Note that, in contrast to in most previous stud-
ies on conjunction errors (but see also Gavanski & Roskos-
Ewoldsen, 1991; Nilsson, 2008), here the participants were
provided with explicit numerical estimates of the compo-
nent probabilities. If conjunction fallacies appear in this
task they cannot plausibly be explained by use of the rep-
resentativeness heuristic.

Because the problems only involve integration of two
components and the multiplicative rule (Eq. (3)) for con-
junctions of independent events is likely to be known to
many participants in an under-graduate student popula-
tion, we were uncertain as to whether most participants
would use controlled intuitive integration, with linear
additive integration, or analytic integration based on re-
trieval from memory of the probability rule (Eq. (3)) and
multiplicative facts. Experiment 3 thus corresponds to
the comparison between odds (multiplication of two dig-
its) and log odds (addition of two digits) in the previous
two experiments, for which the framework in Fig. 1 pro-
vides less guidance. Note also that the log odds format will
only eliminate conjunction fallacies if people sum the com-
ponents, not if they spontaneously average them. There-
fore, we concentrate on only one of the predictions
addressed in the previous two experiments; because the
log probability format invites normative integration both
with the intuitive default mode and by explicit number
crunching, people should find it easier to improve judg-
ment performance with this format.

6.1. Methods

6.1.1. Participants

Thirty undergraduate students participated (17 female
and 13 male; average age = 24.3). As compensation, partic-
ipants received either course credits or a movie ticket.

6.1.2. Apparatus and materials
Stimuli and instructions were included in booklets. The
stimuli were 20 scenarios with the following structure:

The log probability that a patient has virus A1l is —0.07.
The log probability that a patient has virus B1 is —0.50.

Each scenario presented the probability that a randomly
selected patient has virus AN (N equaled 1 for the booklets
first scenario, N equaled 2 for the booklet$ second scenario,
and so on) and the probability that a randomly selected pa-
tient has virus BN. For each scenario, participants were
explicitly informed that presence of virus A was com-
pletely uncorrelated with presence of virus B. There were
two scenario types, probability scenarios (stating each
probability as both a number between 0 and 1 and as a per-
centage) and log scenarios (stating each probability as a log
probability; as in the example above). For the probability
scenarios the task was to assess the probability in percent
that a randomly selected patient has both virus AN and
virus BN. For the log probability scenarios the task was to
assess the probability in log probability that a randomly
selected patient has both virus AN and virus BN.

There were three types of instructions, a metric instruc-
tion, a computational probability instruction and a compu-
tational log probability instruction. The metric instruction
included a short text explaining that probabilities can be
expressed in various ways. Among other things, the text
stated that “probabilities are normally expressed as num-
bers between 0 and 1 or as corresponding percentages be-
tween 0% and 100%” but “are sometimes better expressed
as log probability”. The metric instructions also included
an explanation of the terms logarithm and log probability
as well as a table describing how the probabilities of 1%,
10%, 20%, 30%, ..., 90%, 100% can be converted into log
probabilities. Thus, in contrast to in Experiments 1 and 2,
in Experiment 3 the metric instruction was the same in
both the metric probability and the metric log probability
conditions, introducing both of the two possible formats.

At the end, the metric instructions included five multi-
ple choice questions concerning the relationship between
log probabilities and probabilities described as numbers
between 0 and 1 (e.g., the log probability of —1.00 equals
which of the following probabilities: .01, .1, .2, .5, 1.0)
and a description of the structure of the scenarios. By dis-
playing equations describing the normative combination
rules and numerical examples, the computational proba-
bility instruction showed how p(A) and p(B) are combined
into p(A&B) and the computational log probability instruc-
tion showed how log(p(A)) and log(p(B)) are combined into
log(p(A&B)). There were four types of booklets. The metric
probability (log probability) booklet included the metric
instruction plus 20% (log probability) scenarios. The com-
putational percentage (log probability) booklet included
the computational percentage (computational log proba-
bility) instruction plus 20% (log probability) scenarios.

6.1.3. Design and procedure

The experiment was a 2x2 mixed design with instruc-
tions (metric vs. computational; within subjects) and for-
mat (probability vs. log probability; between subject) as
independent variables. All participants were tested indi-
vidually. At arrival, participants were handed a booklet.
Half of the participants were handed the metric probability
booklet and the other half were handed the metric log
probability booklet. After completion of the 20 scenarios,
participants previously handed the metric probability
booklet were asked to complete the computational proba-
bility booklet and the other half of the participants were
asked to complete the computational log probability
booklet.

6.2. Results and discussion

As in Experiment 1, all data was transformed to the 0-1
probability scale. The performance in terms of Mean Abso-
lute Error (MAE) of judgment between the probability
assessment and the correct conjunctive probability is sum-
marized in Fig. 7. In the Metric instruction condition, the
median MAE is lower (better) with the log probability for-
mat (.018 vs. .035 with the probability format), but the dif-
ference is not statistically significant (Mann-Whitney;
U=281,Z=1.03, p=.305). In the Computational instruction
condition, however, the median MAE is significantly lower
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Fig. 7. Experiment 3: The median performance with interquartile index
in terms of Mean Absolute Error (MAE) between the judgment and the
correct conjunctive probability.

(better) with the log probability format, .003 vs. .014 with
the probability format: Mann-Whitney; U=27, Z=3.38,
p =.001). Again, the performance with the log format and
a brief instruction (Metric condition) is virtually as good
as performance with the probability format and computa-
tional instruction (.018 vs. .014), and performance with
log probability and computational instruction is almost
perfect.

The mean rate of conjunction fallacies with Metric
instructions was 18% with the probability and 25% with
the log probability formats (Mann-Whitney; U= 103.5,
Z=.04, p=.963). This is lower than in most studies that
have not provided the participants with explicit numbers
for the component probabilities (where the rate is often
in the 30-50% interval, see Nilsson et al., 2009). We attri-
bute this difference to the fact that many of participants
in this experiment are likely to have analytic knowledge
of the multiplicative integration rule for independent
events (Eq. (3)) and the use of explicit numbers probably
elicited retrieval of this rule in many of the participants.
Notably, the conjunction fallacies for this set of arbitrarily
combined statements cannot be attributed to the represen-
tiveness heuristic, but is likely to derive from intuitive lin-
ear additive integration. Also as predicted, the only
conditions where the conjunction fallacies are virtually
eliminated is with log probability and computational
instruction, where the rate is 1.4% (vs. 6.7% with computa-
tional probability format; Mann-Whitney;, U=57.7,
Z=2.05, p=.04). Thus, even with computational instruc-
tions, explicitly informing about the correct conjunctive
rule from probability theory and providing concrete com-
putational examples, performance with the probability for-
mat was significantly poorer than with the corresponding
instructions for the log probability format. As in Experi-
ment 1, a log format that made the integration additive
served to nominally eliminate the bias.

7. General discussion

The common wisdom in research on probability judg-
ment (Gilovich et al., 2002; Kahneman et al., 1982) is that
people often make poor judgments because they rely on
simplifying heuristics that substitute variables that are
conveniently available (e.g., similarity, fluency) for the nor-
mative properties of probability or frequency (Kahneman
& Frederick, 2002). An alternative proposal pursued in this
article is to place the explanatory emphasis not primarily
on the use of variable substitution as such, but on the
hypothesis that probability theory is not framed in a way
that makes it digestible to the human mind (Juslin et al.,
2009). While many probability rules require multiplicative
(configural) integration, people certainly seem much more
inclined to—and with intuitive judgment possibly cogni-
tively constrained to—integrate information by linear addi-
tive integration (Juslin et al., 2008). The hypothesis as such
is not new, but, if anything, one of the best supported con-
clusions of 50 years of neo-Brunswikian research on judg-
ment (Brehmer, 1994; Cooksey, 1996; Hammond &
Stewart, 2001). But its relevance for probability reasoning
is often neglected.

The results from the experiments reported in this article
generally support the hypothesis that alternative formats
that translate originally multiplicative probability prob-
lems into formats that require addition immediately de-
crease the nominal rate of bias. With the term “nominal”
we want to emphasize that they are regarded as the pre-
dicted effects if people spontaneously integrate informa-
tion linearly and additively, but they need not imply a
deep conceptual understanding of the log metrics or an
ability to generalize to novel tasks. We do not claim that
the short instructions we have provided in our experi-
ments are sufficient achieve these refined levels of under-
standing. Nonetheless, the results raise the possibility that
peoples’ judgments could in certain circumstances (e.g.,
aggregation of risk) be trained to benefit from a format that
alleviates the need for multiplication. The degree to which
people can, in a deeper sense, learn to think about uncer-
tainty in terms of other metrics than the traditional prob-
ability metric is an interesting possibility for future
research.

When discussing Experiments 1 and 2 on base-rate ne-
glect it is useful to separate the findings in the probability
condition from the comparison between the odds and log
odds conditions. The hypothesis that base-rate neglect in
the medical diagnosis task is, partially or wholly, explained
by the participants using a linear additive integration rule
was directly supported by two findings from the probabil-
ity conditions. First, independently of whether the partici-
pants had received an instruction on Bayes’ theorem or
not, and independently of whether they had received feed-
back on previous judgments or not, the fit of the linear
additive model was better than the fit of the multiplicative
model. Second, although both formal instruction and feed-
back improved performance, it never reached beyond the
maximum level allowed by linear additive integration.
When participants improve their judgments, either as a re-
sult of instruction (Experiment 1) or extensive training
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with outcome feedback (Experiment 2), they appear to do
so, not by shifting to Bayesian integration, but by adapting
the linear additive integration so that it better approxi-
mates the output from Bayes’ theorem.

An important assumption of the hypothesis developed
in this paper is that linear additive integration is the intu-
itive default that people use when they either lack access
to or are unable to implement analytic rules and, therefore,
that the demand for multiplicative integration is one factor
that often hinders people from implementing probability
theory. A memory-free sequential adjustment process can
perform accurate linear additive integration of almost
any number of cues. However, in a multiplicative task
the many interdependencies between the adjustments im-
plied by successive cues rapidly overwhelms the capacities
of working memory. In a multiplicative task people are
therefore forced to rely on explicit number crunching, or
the best linear additive approximation they can muster.

Without any computational instruction it is unlikely
that our participants knew what to do when confronted
with either the odds version or the log odds version of
the medical diagnosis task. Therefore, it is reasonable to as-
sume that these tasks naturally will engage the intuitive
default mode of information integration that is applied
when no analytic principles are available. If this capacity-
constrained and sequential process, as we have argued,
naturally implements linear additive integration, better
performance will (by mechanism, not design) be achieved
with the log odds version. This is exactly what was ob-
served in the experiments.

Further, if multiplicative integration is one factor that
obstructs people from implementing normative rules, by
necessitating too excessive retrieval and elaboration of
declarative facts about multiplication within the con-
straints of working memory, instructions and feedback
should be less effective in a task that demands multiplica-
tive integration than in a task that demands additive inte-
gration. This prediction was directly supported by the
finding that instructions and feedback had a stronger effect
in the log odds conditions than in the odds conditions
(remember, the only difference between the odds format
and the log odds format is that while the former demands
multiplication the latter demands addition).

Both in the odds conditions of Experiments 1 and 2 and
in the probability condition of Experiment 3 many partici-
pants were able to multiply two digits. These findings par-
allel those by Nilsson, Rieskamp, and Jenny (2010). Nilsson
et al. asked participants to combine constituent probabili-
ties into conjunctive probabilities. They found that while
more than a third of the participants multiplied the con-
stituent probabilities, an equally large proportion of partic-
ipants did so by linear additive integration. Some people
thus appear able to multiply the digits, while others have
to rely on the default of linear additive integration. The
framework in Fig. 1 suggests that a crucial difference be-
tween these two groups may refer to their working mem-
ory capacity or their motivation. On this view, only persons
with a lot of working memory capacity and (or) high moti-
vation are likely to engage in the effortful analytic pro-
cesses required for explicit number crunching. The data
in the current experiments do not allow us to make more

detailed tests of the role of working memory and motiva-
tion, or to chart the definitive limitations of peoples’ ability
to perform on line integration according to multiplicative
rules. These predictions have to be addressed in future
studies.

In addition, the results from Experiments 1 and 2 con-
sistently indicated that spontaneously people typically ap-
proach the base-rate problem by integrating the hit-rate
and the base-rate, where most weight is placed on the
hit-rate, but, surprisingly, on average no weight is assigned
to the false-alarm rate. That people assign more weight to
the hit-rate is in the spirit of the representativeness heuris-
tic, but in general they also appreciate the importance of
the base-rate (Ajzen, 1977; Birnbaum & Mellers, 1983;
Fischhoff et al., 1979; Gigerenzer et al., 1988; Kahneman
et al., 1982). Reliance on the representativeness heuristic
or on a Fisherian algorithm (Gigerenzer & Hoffrage,
1995), as such, provides no rationale for why people
should assign any weight to the base-rate, which is irrele-
vant both to the representativeness and the likelihood of
the evidence.

Why do people use base-rate and hit-rate but ignore
false-alarm-rates? We see two possible (and not necessar-
ily mutually exclusive) explanations. The first is that peo-
ple have limited ability to consider the implications of
the alternative hypothesis in hypothesis testing (Ofir,
1988). The second is that people might consider a failure
to diagnose a sick person is more costly than diagnosing
a person that is not sick. A second test will correct a
false-alarm. The severity of a miss as compared to a
false-alarm might be why people overweight hit-rates
and ignores false-alarm-rates. If this is the case, it should
be possible to change the weighting by changing the fram-
ing of the task. That is, if the task is framed such that
misses are less costly than false-alarms, more weight
might be put on false-alarm-rates than on hit-rates.

The results in regard to the conjunction fallacy in Exper-
iment 3 were similar to the corresponding results in Exper-
iments 1 and 2. Whereas with the additive log probability
format, the performance was easily perfected already with
a short instruction, the participants struggled to improve
their performance with the multiplicative probability for-
mat. This parallels the comparison between odds and log
odds in Experiments 1 and 2. Importantly, the substantial
rates of conjunction fallacies in the Metric condition
(22%) cannot be accounted for by the representativeness
heuristic, but suggest linear additive integration.

Obviously, there are also limitations of this study. Be-
cause of the relatively few observations at the level of indi-
vidual participants in Experiment 1 there is an obvious risk
for overfit in the modeling of the data. To address this
problem, we kept the number of free parameters the same
in two models that were fitted to data from the condition
with probability format and we also applied parameter-
free versions of the additive and the multiplicative models
(see Footnote 9). We, moreover, note that all important
conclusions from Experiment 1 were replicated in Experi-
ment 2, where there were much more observations per
participant and the risk of overfit is less of a problem. A
second potential limitation that might be raised is that
the number of participants in each experiment is rather
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low. We, however, note that the main results are, if any-
thing, remarkably consistent across all three experiments.

Altogether we submit that these results suggest that the
main constraint on peoples’ ability to make the normative
judgments (according to probability theory) may not pri-
marily be their reliance on judgment heuristics like repre-
sentativeness (Kahneman & Frederick, 2002), but their
spontaneous inclination for linear and additive informa-
tion integration. As might be expected if this inclination
derives from a cognitive constraint, at least in the more
complex problems, like those involving Bayes’ theorem in
probability version where people are unable to “number
crunch” the probabilities according to the analytical for-
mulae, this linear additive disposition appears very little
affected by instruction or training.

In this article, the performance was improved by fram-
ing the tasks so that linear additive integration could be
used to generate normative solutions. It is unlikely that
this improvement had anything to do with participants
being able to represent the problem in a more correct
way. In this respect, our manipulation is conceptually dif-
ferent from most other manipulations that have been
found to improve performance in Bayesian reasoning tasks.
We believe that this shows that performance in these types
of tasks can be improved in two different ways. The first is
to frame the task to make it easier to correctly represent
the problem, which, in effect, facilitates the usage of ana-
lytical processes. The second way is to frame the task in
such a way that the information can be combined by linear
additive integration (what we suggests is the default rule
of the intuitive system).

Performance can be enhanced by manipulations on
both the contextual and the computational level. In this
way, our findings complement the nested set hypothesis
of Barbey and Sloman (2007). In the terminology of the
nested set hypothesis, our manipulations aided the pro-
cesses of intuitive judgment, while manipulations at the
contextual level (e.g., natural frequencies) enable partici-
pants to apply appropriate analytical processes. More gen-
erally, a complete account should explain why these biases
occur both when representativeness can and cannot be ap-
plied, why the biases are reduced by formats that highlight
the set relations, and why the biases can be more easily re-
duced by additive logarithm formats. We believe that such
an account will incorporate both insights captured by the
nested set hypothesis (Barbey & Sloman, 2007) and by
the computational considerations addressed in this article.

Although our explanation may depart from the typical
textbook account, it is less surprising from the perspective
of other phenomena in judgment research, such that peo-
ple successively average “old” and “new” data in Bayesian
belief revision tasks (Hogarth & Einhorn, 1992; Lopes,
1985, 1987; Shanteau, 1970, 1972, 1975) and adapt their
use of base-rates flexibly depending on context and causal
models (Ajzen, 1977; Birnbaum & Mellers, 1983; Fischhoff
et al., 1979; Gigerenzer et al., 1988; Kahneman et al.,
1982). As noted, a large literature on multiple-cue judg-
ment likewise demonstrates that people are more inclined
for linear additive integration than configural integration
of cues (Brehmer, 1994; Cooksey, 1996; Hammond &
Stewart, 2001). From this point of view, people have

problems with many of the classic “cognitive illusions”
for the very same reasons as they have problems with
many other configural multiple-cue tasks. When presented
with judgment tasks for which no analytic principles are
available people resort to the cognitive activity of last re-
sort, which apparently fails harmonize with probability
theory.

Acknowledgements

This research was sponsored by the Swedish Research
Council and the Swedish Tercentary Bank foundation. The
authors are indebted to Ebba Elwin, Goran Hansson, and
Maria Henriksson for valuable comments and discussions
of the topics addressed in this article.

References

Adelman, L., Stewart, T. R., & Hammond, K. R. (1975). A case history of the
application of social judgment theory to policy formation. Policy
Sciences, 6, 137-159.

Ajzen, 1. (1977). Intuitive theories of events and effects of base-rate
information on prediction. Journal of Personality and Social Psychology,
35,303-314.

Anderson, N. H. (1981). Foundations of information integration theory. New
York: Academic Press.

Anderson, N. H. (1996). A functional theory of cognition. Mahwah, NJ:
Lawrence Erlbaum Associates.

Barbey, A. K., & Sloman, S. A. (2007). Base-rate respect: From ecological
rationality to dual processes. Behavioral and Brain Sciences, 30,
241-254.

Birnbaum, M. H., & Mellers, B. A. (1983). Bayesian inference: Combining
base-rates with opinions of sources who vary in credibility. Journal of
Personality and Social Psychology, 45, 792-804.

Brehmer, B. (1994). The psychology of linear judgment models. Acta
Psychologica, 87, 137-154.

Brunswik, E. (1952). The conceptual framework of psychology. Chicago:
University of Chicago Press.

Cooksey, R. W. (1996). Judgment analysis: Theory, methods, and
applications. San Diego: Academic Press, Inc.

Costello, F. J. (2009). How probability theory explains the conjunction
fallacy. Journal of Behavioral Decision Making, 22, 213-234.

Cowan, N. (2001). The magical number 4 in short-term memory: A
reconsideration of mental storage capacity. Behavioral and Brain
Sciences, 24, 87-185.

Darlow, A. L, & Sloman, S. A. (2010). Two systems of reasoning:
Architecture and relation to emotion. Wiley Interdisciplinary Reviews:
Cognitive Science, 1, 382-392.

DelLosh, E. L., Busemeyer, ]J. R., & McDaniel, M. A. (1997). Extrapolation:
The sine qua non for abstraction in function learning. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 23,
968-986.

Denrell, J. (2005). Why most people disapprove of me: Experience
sampling in impression formation. Psychological Review, 112,
951-978.

Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems
and opportunities. In D. Kahneman, P. Slovic, & A. Tversky (Eds.),
Judement under uncertainty: Heuristics and biases (pp. 249-267).
Cambridge, UK: Cambridge Univ. Press.

Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment,
and social cognition. Annual Review of Psychology, 59, 255-278.

Fischhoff, B., Slovic, P., & Lichtenstein, S. (1979). Subjective sensitivity
analysis. Organizational Behavior and Human Performance, 23,
339-359.

Gavanski, 1., & Roskos-Ewoldsen, D. R. (1991). Representativeness and
conjoint probability. Journal of Personality and Social Psychology, 61,
181-194.

Gigerenzer, G., Hell, W., & Blank, H. (1988). Presentation and content: The
use of base-rates as a continuous variable. Journal of Experimental
Psychology: Human Perception and Performance, 14, 513-525.

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning
without instruction: Frequency formats. Psychological Review, 102,
684-704.



P. Juslin et al./Cognition 120 (2011) 248-267 267

Gigerenzer, G., & Murray, D.J. (1987). Cognition as intuitive statistics.
Hillsdale, NJ: Erlbaum. Available from <http://www.kli.ac.at/
theorylab/AuthPage/G/GigerenzerG.html>.

Gilovich, T., Griffin, D. W., & Kahneman, D. (2002). Inferences, heuristics,
and biases: New directions in judgment under uncertainty. New York:
Cambridge University Press.

Hammond, K. R. (1996). Human judgment and social policy: Irreducibly
uncertainty, inevitable error, unavoidable injustice. New York: Oxford
University Press.

Hammond, K. R,, & Stewart, T. R. (Eds.). (2001). The essential Brunswik:
Beginnings, explications, applications. Oxford, England: Oxford
University Press.

Hertwig, R., & Gigerenzer, G. (1999). The conjunction fallacy revisited:
How intelligent inferences look like reasoning errors. Journal of
Behavioral Decision Making, 12, 275-305.

Hogarth, R. M., & Einhorn, H. ]J. (1992). Order effects in belief updating:
The belief-adjustment model. Cognitive Psychology, 24, 1-55.

Jonides, ]., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S.
(2008). The mind and brain of short-term memory. Annual Review of
Psychology, 59, 193-224.

Juslin, P., Karlsson, L., & Olsson, H. (2008). Information integration in
multiple-cue judgment: A division-of-labor hypothesis. Cognition,
106, 259-298.

Juslin, P., Nilsson, H., & Winman, A. (2009). Probability theory, not the
very guide of life. Psychological Review, 116, 856-874.

Juslin, P., Olsson, H., & Olsson, A.-C. (2003). Exemplar effects in multiple-
cue judgment. Journal of Experimental Psychology: General, 132,
133-156.

Kahneman, D., & Frederick, S. (2002). Representativeness revisited:
Attribute substitution in intuitive judgment. In T. Gilovich, D. W.
Griffin, & D. Kahneman (Eds.), Heuristics and biases: The psychology of
intuitive judgment (pp. 49-81). New York: Cambridge University
Press.

Kahneman, D., Slovic, P, & Tversky, A. (1982). Judgments under
uncertainty: Heuristics and biases. Cambridge, UK: Cambridge Univ.
Press.

Kahneman, D., & Tversky, A. (1973). On the psychology of prediction.
Psychological Review, 80, 237-251.

Karelaia, N., & Hogarth, R. M. (2008). Determinants of linear judgment: A
meta-analysis of lens model studies. Psychological Bulletin, 134,
404-426.

Koehler, J. J. (1996). The base-rate fallacy reconsidered: Descriptive,
normative and methodological challenges. Behavioral and Brain
Sciences, 19, 1-17.

Lopes, L. L. (1985). Averaging rules and adjustment processes in Bayesian
inference. Bulletin of the Psychonomic Society, 23, 509-512.

Lopes, L. L. (1987). Procedural debiasing. Acta Psychologica, 64, 167-185.

McKenzie, C. R. M. (1994). The accuracy of intuitive judgment strategies:
Covariation assessment and Bayesian inference. Cognitive Psychology,
26, 2009-2239.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification
learning. Psychological Review, 85, 207-238.

Nilsson, H. (2008). Exploring the conjunction fallacy within a category
learning framework. Journal of Behavioral Decision Making, 21, 471-490.

Nilsson, H., Rieskamp, J., & Jenny, M. (2010). Experience with constituent
events has no effect on the overestimation of conjunctive
probabilities. Unpublished manuscript.

Nilsson, H., Winman, A., Juslin, P., & Hansson, G. (2009). Linda is not a
bearded lady: Configural weighting and adding as the cause of extension
errors. Journal of Experimental Psychology: General, 138, 517-534.

Nosofsky, R. M., & Johansen, M. K. (2000). Exemplar-based accounts of
“multiple-system” phenomena in perceptual categorization.
Psychonomic Bulletin and Review, 7, 375-402.

Ofir, C. (1988). Pseudodiagnosticity in judgment under uncertainty.
Organizational Behavior and Human Decision Processes, 42, 343-363.

Reyna, V. F., & Mills, B. A. (2007). Converging evidence supports fuzzy-
trace theory’s nested sets hypothesis (but not the frequency
hypothesis). Behavioral and Brain Sciences, 30, 278-280.

Roussel, ].-L., Fayol, M., & Barrouillet, P. (2002). Procedural vs. direct
retrieval strategies in arithmetic: A comparison between additive and
multiplicative problem solving. European Journal of Cognitive
Psychology, 14, 61-104.

Shanteau, J. C. (1970). An additive model for sequential decision making.
Journal of Experimental Psychology, 85, 181-191.

Shanteau, J. C. (1972). Descriptive versus normative models of sequential
inference judgments. Experimental Psychology, 93, 63-68.

Shanteau, J. C. (1975). Averaging versus multiplying combination rules of
inference judgment. Acta Psychologica, 39, 83-89.

Tversky, A., & Kahneman, D. (1982). Evidential impact of base rates. In D.
Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty:
Heuristics and biases (pp. 153-160). Cambridge, UK: Cambridge Univ.
Press.

Tversky, A., & Kahneman, D. (1983). Extensional vs. intuitive reasoning:
The conjunction fallacy in probability judgment. Psychological Review,
91, 293-315.

Villejoubert, G., & Mandel, R. R. (2002). The inverse fallacy: An account of
deviations from Bayes’ theorem and the additivity principle. Memory
& Cognition, 30, 171-178.

Wedell, D. H., & Moro, R. (2008). Testing boundary conditions for the
conjunction fallacy: Effects of response mode, conceptual focus and
problem type. Cognition, 107, 105-136.

Wolfe, C. R, & Reyna, V. F. (2010). Semantic coherence and fallacies in
estimating joint probabilities. Journal of Behavioral Decision Making,
23, 203-223.



