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While a wealth of evidence suggests that humans tend to rely on additive cue combination
to make controlled judgments, many of the normative rules for probability combination
require multiplicative combination. In this article, the authors combine the experimental
paradigms on probability reasoning and multiple-cue judgment to allow a comparison
between formally identical tasks that involve probability vs. other task contents. The pur-
pose was to investigate if people have cognitive algorithms for the combination, specifi-
cally, of probability, affording multiplicative combination in the context of probability.
Three experiments suggest that, although people show some signs of a qualitative under-
standing of the combination rules that are specific to probability, in all but the simplest
cases they lack the cognitive algorithms needed for multiplication, but instead use a variety
of additive heuristics to approximate the normative combination. Although these heuris-
tics are surprisingly accurate, normative combination is not consistently achieved until
the problems are framed in an additive way.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

A wealth of evidence suggests that humans are inclined
to rely on linear additive combination when making con-
trolled judgments that are constrained by capacity-limited
and sequential consideration of cues (Anderson, 1981,
1996; Hogarth & Einhorn, 1992; Juslin, Karlsson, & Olsson,
2008; Lopes, 1985, 1987; Roussel, Fayol, & Barrouillet,
2002; Shanteau, 1970, 1972, 1975). Data on multiple-cue
judgment thus typically suggest that judgment is a linear
additive combination of the cues (Brehmer, 1994; Cooksey,
1996; Hammond, 1996; Hammond & Stewart, 2001; Juslin,
Olsson, & Olsson, 2003; Karelaia & Hogarth, 2008).

This inclination for linear additive combination stands
in stark contrast to the requirements for multiplicative
combination implied by many of the rules of probability
theory. In recent publications (e.g., Juslin, Nilsson, &
Winman, 2009; Nilsson, Winman, Juslin, & Hansson,
2009) it has therefore been argued that this propensity
for linear additive combination may be an important—
and often neglected—constraint on people’s ability to rea-
son with probability (see also Jenny, Rieskamp, & Nilsson,
2014; Nilsson, Rieskamp, & Jenny, 2013). Indeed, even
classic judgment biases, like the conjunction fallacy and
base-rate neglect (Kahneman & Frederick, 2002), may not
primarily be explained by use of a specific heuristic per
se, like ‘‘representativeness’’, as typically claimed
(although people no doubt sometimes use similarity or
representativeness to make these judgments), but by a
tendency to combine constituent probabilities by linear
additive combination. Accordingly, the rate of conjunction
errors appears equally high regardless of whether the rep-
resentativeness heuristic is applicable or not (Gavanski &
Roskos-Ewoldsen, 1991; Nilsson, 2008).
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Somewhat surprisingly, perhaps, previous research is
not conclusive in regard to whether people have spontane-
ous appreciation for the reasoning rules specific to proba-
bility or if they treat tasks with probability contents just
as any other task. One possibility is that extensive experi-
ence with the processing of an uncertain environment
(in the species or the individual) has ‘‘geared’’ into the
mind the rules of reasoning that are specific to uncertainty.
The other possibility is that people spontaneously fail to
make this distinction and instead apply whatever gen-
eral-purpose algorithms for reasoning they possess. The
issue is further highlighted by the increasing tension
(e.g., Bowers & Davis, 2012; Griffiths, Chater, Norris, &
Pouget, 2012) between research suggesting that people
often violate probability theory (e.g., Gilovich, Griffin, &
Kahneman, 2002) and the mounting popularity of Bayesian
models of cognition, often presuming that information is
processed according to probability theory (Oaksford &
Chater, 2006). Although some of this tension may be
explained by the research programs being concerned with
different levels of analysis (i.e., Griffiths et al., 2012; Marr,
1982), the relationships between these conclusions need to
be better elaborated.

There are some indications that information processing
that involves probability sometimes departs from process-
ing of other contents. Research in the context of Norman
Anderson’s functional measurement suggests that, in con-
trast to the combination in many other tasks, in decision
making the combination of probability and value is multi-
plicative, as implied by expected value and expected util-
ity models (Anderson, 1996). In regard to the decrease in
judgment bias often observed when probability problems
are presented in natural frequencies, it has been proposed
that the cognitive algorithms shaped by evolution are
tuned to an input, not in terms of single event probabilities
(proportions), but natural frequencies (Cosmides & Tooby,
1996; Gigerenzer & Hoffrage, 1995; but see Barbey &
Sloman, 2007, for a review and a critical discussion of this
argument). It has moreover been suggested that frequen-
cies, clearly a key input to reasoning about probabilities,
are encoded and stored automatically (Hasher & Zacks,
1979; Zacks & Hasher, 2002). More generally, it seems fair
to conclude that direct comparisons of people’s informa-
tion processing abilities in probability tasks as compared
to other formally identical tasks has received very little
attention.

In this article, we combine the traditional paradigms
from research on probability judgment and multiple-cue
judgment in order to investigate whether the observed
constraints, or inclinations, in regard to people’s combina-
tion of cues in multiple-cue judgment extend also to the
combination of probabilities, or if there are cognitive algo-
rithms specifically tuned to the input, and the computa-
tional demands, relevant to probability. In particular, we
will explore if the inclination for linear additive combina-
tion applies equally to the processing of probability as it
does to standard multiple-cue judgment tasks. In three
experiments, we therefore explore people’s ability to com-
bine probabilities and compare these abilities to those
reported in multiple-cue judgment tasks. In a nutshell:
how ‘‘special’’ are probabilities?
1.1. Cue combination in multiple-cue and probability
judgment

Multiple-cue judgment is a task where several, often
probabilistic, cues are used for judgment of some unknown
criterion, as when a physician relies on symptoms (cues) to
make a judgment of the correct diagnosis (criterion).
Although multiple-cue judgment tasks may sometimes
involve nominal cues (Castellan & Edgell, 1973), making
them formally similar to categorization tasks (Juslin
et al., 2003), most of the research, and in particular, the
research relevant to our current concern, involves the use
of continuous (‘‘metric’’) cues to make a judgment of a con-
tinuous (‘‘metric’’) criterion (Brehmer, 1994). Research on
both expert and novice judgment supports a number of
fairly robust conclusions (Brehmer, 1994; Cooksey, 1996).
First, people often use only a few of the available cues in
an inconsistent manner. The same cue values thus elicit
different judgments from trial to trial. Second; people often
have poor insight into which cues they use and how they
combine them (see Lagnado, Newell, Kahan, & Shanks,
2006, for a different view). Third, and as we have seen,
the judgments tend to be linear and additive combinations
of the cues, and this tendency is pervasive even if the
underlying cue-criterion relations violate linearity and
additivity (see Karelaia & Hogarth, 2008 for a review).

Research on probability judgment has primarily
emphasized the assessment rather than the combination
of probability. This is true also of tasks that, at least on
the face of it, involve combination of probabilities like
the medical diagnosis task (Eddy, 1982):

The probability that a person randomly selected from
the population of all Swedes has the disease is 2%. The
probability of receiving a positive test result given that
one has the disease is 96%. The probability of receiving a
positive test result if one does not have the disease is
8%. What is the probability that a randomly selected
person with a positive test result has the disease?

Typically, the assessed probability is much higher than
the probability implied by Bayes’ theorem (here .20),
commonly interpreted as the result of a too strong captiva-
tion by the diagnostic evidence at the neglect of the low
base-rate of the disease (Eddy, 1982; Koehler, 1996). The
most influential explanation (Kahneman & Frederick,
2002) emphasizes that people substitute hard
‘‘extensional’’ facts that are relevant to probability, such
as frequencies and set relations, with conveniently
available, subjective heuristics, like representativeness,
which do not obey probability theory (Koehler, 1996;
Tversky & Kahneman, 1983).

This medical diagnosis task, which clearly involves the
combination of three ‘‘cues’’ (base-rate, hit-rate, and
false-alarm rate), is similar to a typical multiple-cue judg-
ment task. It has accordingly been proposed that the incli-
nation for linear additive combination observed in
research on multiple-cue judgment might be an impor-
tant—and often neglected—contributor to biases observed
in tasks that require multiplicative probability combina-
tion, like the medical diagnosis task (Juslin, Nilsson,
Winman, & Lindskog, 2011; Juslin et al., 2009; Nilsson



1 The simple cases referred to here are those when people can produce
the normative answer by use of knowledge retrieved from long term
memory, for example, by retrieving the analytic rule that the probabilities
of independent events should be multiplied, together with multiplicative
facts (e.g., ‘‘.5 � . 5 = .25’’). While this analytic process might be feasible for
some tasks that require conjunctive combination of a few probabilities,
they are less plausible in tasks with many error sources or a disjunctive
frame (see Juslin et al., 2011).
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et al., 2009). In this article, we thus explore the relationship
between these two tasks in greater detail.

1.2. Do people understand probability?

In the last 40 years, the popular answer to this question
has been—in important respects—no! Apparently, people
lack the cognitive algorithms that correspond to probabil-
ity theory and rely on heuristics that, although useful, pro-
duce biases in the probability judgments (Gilovich et al.,
2002). An influential view evokes two kinds of processing
(e.g., Evans, 2011) where Type 1 processes, which are
rapid, intuitive, and heuristic, are supervised by slower,
analytic Type 2 processes (see also Evans, 2008;
Kahneman & Frederick, 2002). Although Type 1 processing
has traditionally been the main seat of heuristic process-
ing, while Type 2 may include analytical insights about
probability theory, recent formulations (e.g., Evans, 2011)
emphasize that cognitive biases may derive from both
processes.

Because, as noted by proponents of dual processing
theory (Evans, 2011), all functionally distinct units of
behavior involve both Type 1 and Type 2 processing,
we find it more useful to distinguish between three
judgment processes covering the entire arc from cues
to criterion (Juslin et al., 2011). Analytic judgment
involves manipulation in working memory of explicit
representations of numbers and equations (e.g., when
solving a Base-rate problem by entering multiplication
facts through the steps implied by Bayes’ theorem). With
exemplar memory a judgment is produced by directly
retrieving a similar case with a known criterion from
memory (e.g., a similar base-rate problem with a known
posterior probability). Without computational aids (e.g., a
computer), analytic judgment is constrained by working
memory and only applicable to the simplest problems,
while exemplar memory mainly applies to very well-
known judgment domains. Therefore, often people have
to resort the third judgment process, aptly described as
the ‘‘. . .cognitive activity of last resort’’ (K. R. Hammond).

Controlled intuitive judgment involves considering the
impact of each cue on the criterion by a controlled, sequen-
tial, and capacity-constrained process. Although the cues
are explicitly attended, the cue combination is naturally
embodying successive adjustment and the linear additive
cue combination that arises is implicit and ‘‘emergent’’ in
the process. In such a process, multiplicative (configural)
cue combination requires that the adjustment made in
view of a cue depends not only on this cue, but also on
the cues considered previously in the sequence, which
requires taxing working memory resources. Because many
probability rules, including the rules for conjunctions and
base-rate problems, involve multiplication, people are
bound to have difficulties with these problems (see Juslin
et al., 2009, 2011). From this point of view, we predict that,
from long experience with stochastic events, people do
have qualitative insight into many of the probability laws
(e.g., that the base-rate is relevant to the (posterior) prob-
ability in a base-rate problem, or that conjunctions of
events tend to have a low probability and disjunctions of
events a high probability). However, in all but the simplest
cases,1 they are unable to perform the multiplicative combi-
nation and instead they have to resort to, and adapt, additive
heuristics to perform risk combination tasks.

1.3. Multiple risk combination

Risk assessments are crucial to many aspects of every-
day life. For example, the planning of a trip involves multi-
ple sources of risk that can influence whether one arrives
safely at the destination. The airport shuttle may be late,
something may happen on the shuttle ride, or a storm
may make it impossible for the flight to depart, and so
on. A large number of events may occur and, even if every
single event by itself is very unlikely, one has to take into
account the accumulation of all of these small risks. People
find this very difficult.

When Bar-Hillel (1973) investigated probability judg-
ments for disjunctions and conjunctions of compound
events, for example, she found that people tend to overes-
timate the conjunctive probability but underestimate the
disjunctive probability. In the context of linear additive
models it is of interest to note that this is predicted if peo-
ple combine probabilities by averaging, rather than by the
rules from probability theory (see also Brockner, Paruchuri,
Idson, & Tory Higgins, 2002). Svenson (1984), Shaklee and
Fischhoff (1990) and Doyle (1997) investigated risk for
compound events in the context of cumulative risk over
time. Also here the results were indicative of additive strat-
egies. The data reported in Doyle (1997) are illustrative. He
categorized the strategies by combining a statistical analy-
sis of the responses with self-reports from the participants.
A lot of participants summed the single year risks. Some
participants responded with the average risk for every time
period or used the ‘‘anchoring and adjustment’’ heuristic
(Tversky & Kahneman, 1974) with single year probability
as an anchor and then adjusting it in the direction of the
normative response. A negligible minority of the partici-
pants applied the normatively correct strategy, and some
tried to apply it but failed. In sum, the literature suggests
that people have considerable difficulty with multiple risk
combination and, if anything, the results are indicative of
the use of a plethora of linear additive strategies, like sum-
mation, mean, and anchoring-and-adjustment.

1.4. A generic multiple risk combination task

Fig. 1A and B illustrates the task in the experiments
reported below, which combine properties of both a multi-
ple-cue judgment task and a probability reasoning task.
Participants are asked to observe a sequential production
line with four independent steps, where each step is asso-
ciated with a known probability of error in the production.
They are also told that the probabilities of error at each



Criterion

0.0

0.2

0.4

0.6

0.8

1.0

Ju
dg

m
en

t

 Mean
 Summation

Predictions; Disjunctions Predictions:Conjunctions

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Criterion

0.0

0.2

0.4

0.6

0.8

1.0

Ju
dg

m
en

t

 Mean
 Summation

Step A 
Error free 
probability  

.95 

Step B 
Error free 
probability 

.98

Step C 
Error free 
probability 

1

Step D 
Error free 
probability  

.99 

Production Line Task – Conjunctive frame 

What is the probability of no error in the product? 
Probability ____ 

Step A 
Error 

probability  
.05 

Step B 
Error 

probability 
.02

Step C 
Error 

probability 
0

Step D 
Error 

probability  
.01 

Production Line Task – Disjunctive frame 

What is the probability of (at least one) error in the product? 
Probability ____ 

A

B

C D

Fig. 1. Panel A: Schematic illustration of the multiple-risk combination task in disjunctive frame used in Experiment 1. In a production line there are a
number of production steps, where there is an independent probability (risk) of an error occurring in each production step. The participant’s task is to assess
the probability of (at least one) error in the final product. Panel B: Schematic illustration of the corresponding multiple-risk combination task in conjunctive
frame. Here the task presents the probability of error-free production in each step of the process and the task is to assess the probability of error-free
production in all four steps. Panel C: The predictions by a summation and a mean heuristic plotted against the normative probability in the multiple-risk
combination task in disjunctive frame. Panel D: The predictions by a summation and a mean heuristic plotted against the normative probability in the
multiple-risk combination task in a conjunctive frame. The predictions in C and D were computed by sampling 10,000 quadruples of error probabilities,
where each error probability was independently sampled from a uniform probability between 0 and .25.
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production step are independent; in other words, that an
error occurring at one step does not affect the probability
of error at another step. The task in the experiments frames
the probability information in two different ways. In the
disjunctive frame the probability of an error is provided at
each step and participants are asked to report the probabil-
ity of at least one error occurring in the final product that
has passed through all four steps. Participants are thus
required to estimate the disjunction of the four error prob-
abilities. In the conjunctive frame the probability of no error
(i.e. the complement of the probability of an error) is pro-
vided at each step and participants are asked to report the
probability that no error has occurred in the final product.
This frame requires the participants to estimate the con-
junction of the four probabilities of no error.

The normative solution in both frames requires multi-
plicative combination of the probabilities. In the disjunc-
tive frame in Fig. 1A, which reports error probabilities,
the probability p(E) of (at least one) error in the final prod-
uct, after passing through all production steps, is a multi-
plicative function of the error probabilities pi(e) in each
step (i = 1, . . .,4),

pðEÞ ¼ 1�
Y4

i¼1

ð1� piðeÞÞ: ð1Þ
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In the conjunctive frame in Fig. 1B, that reports the
probability of error-free production at each step, the prob-
ability p(C) of a correct (or error-free) product is computed,

pðCÞ ¼
Y4

i¼1

piðcÞ; ð2Þ

where pi(c) = 1 � pi(e).

1.5. Additive heuristics for risk combination

In the disjunctive frame, even if the participants lack
knowledge of the exact functional forms of probability the-
ory they might possess the qualitative insight that; as the
error probabilities in each step increase, the total probabil-
ity of an error increases. One way to accommodate this
insight, without knowing Eq. (1), would be to add up the
error probabilities at each step. In the disjunctive frame,
corresponding to Eq. (1), this implies,

Sd ¼
X4

i¼1

piðeÞ: ð3Þ

For example, when faced with the task illustrated in
Fig. 1A, adding the four risks would yield a probability of
at least one error of .08 (.05 + .02 + 0 + .01). When applied
to small error probabilities summation is an accurate heu-
ristic for computing the total risk.2

Fig. 1C illustrates the accuracy of risk summation in a
disjunctive frame. As is evident in Fig. 1C, for normative
risks below .2, summation and probability theory yield vir-
tually identical results. At higher probabilities summation
overestimates the normative risk, although the overall cor-
relation between the sum and the normative risk is .99.
Fig. 1C also illustrates a mean heuristic, using the average
error probability Ad as the estimate of the total error prob-
ability (i.e., Ad = Sd/4), which underestimates the normative
risk. Note also that it is very straightforward to adapt these
heuristics so that they not only correlate .99 with the nor-
mative answer, but also coincide numerically with the nor-
mative answer. For example, in the range shown in Fig. 1C,
learning to report approximately 3/4 of the sum risk prob-
ability yields a Mean Absolute Deviation (MAD) from the
correct answer lower than .04.

In a conjunctive frame, participants are faced with the
probabilities of no errors in each step and are asked to give
the probability that no error occurs in the production line.
Even though the normative combination of the probabili-
ties is quite straightforward it requires both knowledge
of Eq. (2) and the ability to carry out the multiplication.
In principle, people could use a corresponding summation
heuristic also here. If people have the qualitative insight
that the probability of no error in the production is inver-
2 To see why summation is a good heuristic, it is useful to consider an
alternative way to represent the disjunctive probability in Eq. (1): as the
sum of the probabilities minus their intersection. The equation below
computes the probability pðA _ BÞ of the disjunction of events A and B,

pðA _ BÞ ¼ pðAÞ þ pðBÞ � pðAÞ � pðBÞ:

When p(A) and p(B) are small the intersection is small and a summation
strategy comes close to the normative answer. However, as p(A) and p(B)
increase the last term also grows larger. Accordingly, with large error
probabilities, the intersection is large and the summation strategy overes-
timates the total risk.
sely related to the probability of error at each step, they
could sum the difference between 1 and the stated proba-
bility at each step and reduce a perfect (1) probability of no
error with this amount, that is:

Sc ¼ 1�
X4

i¼1

ð1� piðcÞÞ: ð4Þ

As with summation in the disjunctive frame, this formu-
lation implements the insight that the overall probability of
error is a positive function of the errors at each step, but as
evident from Eq. (4) the transformations and computations
implied in a conjunctive frame are almost as complex as the
normative combination and therefore it does not appear
plausible as a heuristic.3 Fig. 1D illustrates the accuracy of
the summation heuristic in Eq. (4) and a mean heuristic
(Ac ¼ 1� 1=4 �

P4
i¼1ð1� piðcÞÞ ¼

P4
1piðcÞ) in a task with con-

junctive frame. In the conjunctive frame the mean heuristic
is much easier to use than the summation heuristic, because
it can be directly applied to the stated probabilities (p(c)),
whereas the summation heuristic requires taking the com-
plement of the stated probabilities. In sum: in the disjunctive
frame it is plausible that people can implement both the sum-
mation and the mean heuristic, although the mean heuristic
implies a lot of bias in the judgments in absolute terms. In
the conjunctive frame, the summation strategy is too com-
plex to be a plausible heuristic, while the mean heuristic is
easy to implement but also here of more limited validity.

The heuristics described above have limitations, of
course. As noted above, summation works best with small
probabilities and under certain circumstances they pro-
duce unreasonable results. For example, in the disjunctive
frame with four error probabilities, each larger than .25,
summation produces a combined probability larger than
1. In practice, for the heuristics to deliver both simple cal-
culation and approximately valid output, we expect the
summation heuristic primarily to be applied to small error
probabilities in a disjunctive frame and the mean heuristic
to be applied primarily in the conjunctive frame.

The results illustrated in Fig. 1C and D suggests two
conclusions. A theoretical conclusion is that there may be
little incentive to shift from summation to multiplication,
or even that it might be difficult to detect the superiority
of the latter strategy from experience (Juslin et al., 2009).
A methodological conclusion is that in data with measure-
ment error, the strategies will be very difficult to distin-
guish on the basis of model fits alone.

1.6. Overview of the experiments

In Experiment 1, we compare two formally identical
tasks, one that involves risk (see Fig. 1A and B), the other
a standard multiple-cue judgment task involving inference
about a non-stochastic criterion. Experiment 2 addressed if
the multiplicative nature of the risk combination task is
easier to detect if we effectively concentrate the predictors
3 In principle, of course, in the conjunctive frame one could envision also
the possibility that the participants sum the probabilities of error-free
production rather than the error probabilities. However, at least in this task
this strategy produces a very poor heuristic with little rationale, which in
general will imply overall probabilities larger than 1. We found no evidence
for such strategies in the experimental data that is reported below.



4 Note that although probability, from a frequentistic perspective, can be
viewed as the long-run proportion of an event, a proportion as such does
not imply a stochastic component. To introduce uncertainty and a
stochastic component, an element of random sampling from a reference
class has to be introduced. There need not be anything uncertain about the
claim that, for example, the blood stream contains 10% of a substance.
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of the risk to fewer risk sources (cues) and if the training
phase highlights the regions where multiplicative and
additive combination yields the largest discrepancies. In
Experiment 3, we explore the possibility to help the partic-
ipants by turning to a measure of risk that is inherently
more compatible with the human propensity for linear
additive risk combination.

2. Experiment 1: multiple-cue vs. risk judgment

In standard multiple-cue judgment tasks, participants
are inclined to rely on linear additive combination. Exper-
iment 1 was a first attempt to investigate if this propensity
extends to a multiple risk combination task, like the one
illustrated in Fig. 1A. We directly contrast a formally iden-
tical multiple-risk task to a multiple-cue judgment task. In
both tasks, the same information about the cues is con-
veyed in the instructions to participants. As noted above,
the plausible strategies are highly correlated and difficult
to distinguish. In addition, to computational modeling that
fits multiplicative and additive models to the judgments,
we therefore also report an analysis of the residuals from
the normative combination.

If the participants use the normative combination in Eqs.
(1) and (2), the conjunctive frame would seem to be an easier
task than the disjunctive frame, because it involves the
straightforward multiplication of the probabilities of no
error stated in the task (Eq. (2)). But if people use summa-
tion, the disjunctive frame seems the easier task, because
they only have to sum the stated probabilities, while the
conjunctive frame involves the additional step of first com-
puting the complements of the probabilities stated in the
task. The mean heuristic is equally easy to apply in both
frames, but it allows relatively poor performance.

In the experiment, the participants first receive a pretest
without feedback, then a training phase where they make
judgments and receive outcome feedback, finally they
receive a posttest. Therefore, rather than relying on rule-
based combination (additive or multiplicative), exemplar
memory (Medin & Schaffer, 1978; Nosofsky & Johansen,
2000) potentially becomes another way to make the risk
judgments by retrieving memory traces of similar previ-
ously encountered risk configurations together with their
correct overall risk. To investigate if the participants rely
on exemplar memory at test, they are also required to make
judgments of risk probabilities outside of the training range
(i.e., to extrapolate). Exemplar models predict that, because
the judgments are a weighted average of the risk probabili-
ties observed in training, the participants should be unable
to extrapolate outside of the training range. However, if they
rely on some abstract rule from probability theory, or some
additive heuristic, they should be able to extrapolate beyond
the training range (DeLosh, Busemeyer, & McDaniel, 1997;
Juslin et al., 2003 for discussion of such tests of exemplar
models).

2.1. Method

2.1.1. Participants
Participants were 40 undergraduate (14 male and 26

female) students from Uppsala University (M = 24.4 years,
Sd = 4.0). They received a movie voucher or course credits
as compensation for participating in the study.

2.1.2. Design
Experiment 1 used a 2 � 2 � 2 split-plot design with

Frame (conjunction/disjunction) and Task (multiple-cue/
risk) as between-subject variables and Training (pretest/
posttest) as within-subjects variable.

2.1.3. Materials and procedure
The computerized task was divided into three parts,

pretest, training and posttest, and carried out on a PC. On
each trial in all three parts participants were presented
with the combination task illustrated in Fig. 1A.

In the risk condition, the participants task was to assess
the probability (in percent) of at least one error (disjunc-
tive frame) or the probability of no error (conjunctive
frame) in the final product of a whiskey production line,
when the independent probability (risk) of an error (dis-
junctive frame) or the probability of no error (conjunctive
frame) occurring in each of four production steps (A–D)
was given. In the multiple-cue condition, the participants’
task was to assess the concentration in the blood stream
(in percent) of fictitious substance a (disjunctive frame)
or the percentage that was not fictitious substance a
(conjunctive frame), when the proportion of blood cells
containing (disjunctive frame) or the proportion of blood
cells not containing (conjunctive frame) one of four
(A–D) virus strains was given. The function relating the
proportion of substance a and the proportion of the four
virus strains was given by Eqs. (1) and (2) in the disjunctive
and conjunctive frames, respectively. Thus, in both condi-
tions, the participants are presented with information that
involves an identical metric. However, in the risk condition
the cover story involves assessment of a stochastic
component of a probabilistic process where the cues are
probabilities; in the multiple-cue condition the cues are
proportions that deterministically determine the a-con-
centration in the blood.4

Careful attention was given to ascertain that compara-
ble information was available both in the risk and the mul-
tiple-cue judgment task. The cover story in the risk task
involving risks of error in a production line naturally con-
veys that there is a positive relationship between the risk
of error in each production step and the total risk of an
error in the product. In order to convey comparable prior
information in the multiple-cue judgment task the instruc-
tion told the participants that it was known that higher
concentrations of the four virus strands were associated
with higher levels of the substance a. In both the risk
and multiple-cue condition participants were told that
the cues were independent: there was no relationship
between the level of one cue and the level of the other
cues. The two tasks were thus identical, except that in
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the risk condition the variables were probabilities, while in
the multiple-cue task the variables were (deterministic)
proportions of substances in the blood stream.

Stimulus for the pre- and post-tests was created by
orthogonally combining cue values for each of the four
cues (C1: .1, .3, .5; C2: .05, .2, .35; C3: .05, .1; C4: 0, .05) giv-
ing a total of 36 items. In the disjunctive frame participants
were presented with one of these probabilities/proportions
for each cue while participants in the conjunctive frame
were presented with their complement (1-C). Using Eqs.
(1) and (2) gives criterion values in the intervals [.15, .68]
and [.32, .85] in the disjunctive and conjunctive conditions
respectively. Two sets of 60 items was created as stimulus
for training by randomly drawing error-free probabilities
on the range [.8, 1.0] for cue 1 and 2 and [.6, 1.0] for cue
3 and 4 with the constraint that the total error-free proba-
bility should be in the range [.35, .85]. Participants were
randomly assigned to one of the two training sets. In pre-
test participants judged 36 items without feedback. In
training participants made 60 judgments with feedback
of the correct criterion following each judgment. Finally,
in posttest participants made judgments on the 36 items
from pretest and on five additional items that require
extrapolation, below .15 for disjunctions and above .85
for conjunctions, which are diagnostic of exemplar
memory. On each trial all four cues were presented



Table 1
Results of a 3-way repeated-measures ANOVA on performance (Root Mean Square Deviation, RMSD) in Experiment 1, where frame and task content are
between-subjects variables and training (pretest vs. posttest) is a within-subjects variable with effect size (partial g2

p). The statistically significant effects are
highlighted in bold characters.

SS df MS F p g2
p

Frame .0116 1 .0116 1.533 .224 .041
Task content .026 1 .026 3.381 .074 .086
Frame � Task content .068 1 .068 8.953 .005 .199
Error .272 36 .008
Training .419 1 .419 69.602 .000 .659
Training � Frame .000 1 .000 0.031 .862 .001
Training � Task content .003 1 .003 0.516 .477 .0141
Three-way interaction .004 1 .004 0.666 .420 .0182
Error .217 36 .006
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Fig. 3. Mean performance in terms of Root Mean Square Deviation
(RMSD) from the criterion with 95% confidence intervals (N = 10) in
conditions with a multiple-cue or a risk content of the task, separately for
conditions with conjunctive and disjunctive framing.
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simultaneously, as illustrated in Fig. 1A and B, with cues
C1–C4 occupying the production steps A–D respectively.
The presentation order of items within each part of the
experiment was randomized for each participant.

2.2. Results and discussion

Fig. 2A–D plots the mean judgment for each item
against the criterion separately for the pretest and posttest
in each of the four task-event conditions. The identity line
represents accurate judgments and the vertical line delin-
eates the extrapolation region (to the left of the line for dis-
junctions and to the right of the line for conjunctions).
These figures support at least three conclusions. First, in
pretest most participants start off with the judgment bias
that is consistent with a mean heuristic: underestimation
for disjunctions and overestimation for conjunctions. Sec-
ond, in all conditions except the multiple-cue conjunctions
the participants make very accurate judgments in the post-
test. Third, in all four conditions the participants extrapo-
late beyond the training range, accurately estimating the
criterion values below .15 with the disjunctions and over
.85 for disjunctions, despite that they have never encoun-
tered criterion values which are that extreme in training.
This suggests that they rely on rule-based combination
rather than on exemplar memory. In the following, we first
report measures of performance in terms of Root Mean
Square Deviation (RMSD) between the judgment and the
criterion. Thereafter, we report the results of fitting multi-
plicative and additive models to the judgments by the indi-
vidual participants, together with the results of an analysis
of the residuals from normative combination.

2.2.1. Performance
RMSD was entered into a split-plot ANOVA with Task

(multiple-cue vs. risk; between-subjects), Frame (conjunc-
tion vs. disjunction; between-subjects) and Training (pre-
test vs. posttest; within-subjects) as the independent
variables. Table 1 shows that the only statistically signifi-
cant effects were a main effect of Training (F(1,36) =
69.60, MSE = .006, p < .001, g2

p = .659) and an interaction
effect between Task and Frame (F(1,36) = 8.695,
MSE = .008, p = .005, g2

p = .199). As illustrated in Fig. 3, these
results document a difference between the multiple-cue
and the risk judgments: With multiple-cue judgments,
the disjunctive frame leads to better performance than
the conjunctive frame, but with risk judgments perfor-
mance is similar with both frames. The order of difficulty
with multiple-cue judgments but not with risk judgments
thus coincides with the order predicted by the use of a
summation heuristic, because with disjunctions summa-
tion can be applied without computing complements of
the probabilities explicitly stated in the problems. Perfor-
mance also improved substantially in all conditions (RMSD
decreased from .231 to .087). As noted in connection with
Fig. 2A–D, this improvement mainly stems from reduction
in initial bias.
2.2.2. Modeling
Two models were individually fitted to the judgments

by each participant. The first model is a generalization of
the normative model from probability theory,

Mij ¼ m � pþ ð1�mÞ � :5; ð5Þ

where Mij is the predicted judgment by participant i
for task item j, p is the normative response, and m is a
free parameter that captures imperfect learning of the
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normative response from a uniform prior probability dis-
tribution for the value of p. In the disjunctive frame p is
obtained from Eq. (1), while in the conjunctive frame p is
obtained from Eq. (2). With m = 1, the participant performs
the normative assessment, whereas m = 0 implies that the
participants always responds with the expected value of a
uniform prior for p in the interval 0–1 (i.e., .5). Eq. (5) is the
normative combination, but values of m between 0 and 1
allow also for partial learning and for imperfections in
the execution of the normative combination.

The second model implies that the participants perform
additive combination of the probabilities/cues stated in the
problem,

Aij ¼ a � ðp1 þ p2 þ p3 þ p4Þ; ð6Þ

where Aij is the predicted judgment by participant i for task
item j, p1, p2, p3, and p4 are the four probabilities/cues sta-
ted in the task, respectively (see Fig. 1A and B), and a is a
free parameter that captures the mode of additive integra-
tion, where a = 1 is summation and a = .25 is a mean. In the
disjunctive frame the probabilities p1, p2, p3, and p4 are
error probabilities p(e) and in the conjunctive frame the
probabilities refer to error-free production p(c).5

Both of the models were fitted individually and
separately for the Pretest and the Posttest. The parameters
a and m were left unconstrained and the Levenberg–
Marquardt procedure in the Nonlinear Estimation module
of the Statistica software package was used to find values
that minimized the mean sum square of prediction error
(MSE). Table A1 in Appendix reports the medians for MSE
and the parameters (m or a) across participants. The model
fit for both models for each individual participant is
presented in Fig. 4. Both the measures for model fit and
the parameters were characterized by skewed distributions
and heterogeneous variance, requiring the use of on
nonparametric statistics.

In Fig. 4A and B we see that in Pretest there is large var-
iability in the model fit. There were no statistically signifi-
cant main effects of Task and Event on the model fit for the
multiplicative model, nor for the additive model (Mann–
Whitney Tests, all ps > .27). The additive model provided
better fit (lower MSE) than the multiplicative model in all
four cells (Wilcoxon Test, N = 40, T = 126, Z = 3.817,
p < .001, across all four cells).

Fig. 4C and D illustrates that in the Posttest there is less
variability and the models provide better and often similar
fit (as expected given the high correlation between the pre-
dictions). In regard to neither model was there a statisti-
cally significant effect of Task on model fit (Mann–
Whitney Tests, all ps > .473), but the multiplicative model
provided significantly better fit in the disjunctive than in
the conjunctive frame (Mann–Whitney Test, N = 40,
5 Note that Eq. (6) takes only into account additive combination of the
stated probabilities/cues. In principle, some of the participants could be
adding up the complements of the stated probabilities (as in Eq. (4)). This is a
less sensible heuristic given that it amounts to a combination strategy that
appears virtually as complex as the normative combination. However, three
participants in the Pretest were somewhat better described by such a
model summing up the complements to the stated probabilities/cues than
by Eq. (6). This was true of no participant in the Posttest of Experiment 1
and never occurred in Experiment 2 below.
U = 109, Z = 2.448, p = .014), as did the additive model
(Mann–Whitney Test, N = 40, U = 5, Z = 5.261, p < .001).
The model fits of the two models were thus compared sep-
arately in each cell of the design and the multiplicative
model has somewhat better fit in the risk task with a con-
junctive frame (Wilcoxon Test, N = 10, T = 2, Z = 2.599,
p = .009), whereas model fit is similar or identical in the
other three cells (Wilcoxon Test, all ps > .168). The propor-
tion of participants best predicted by the additive model
decreased from 78% in the Pretest to 42% in the Posttest
(this decrease is statistically significant, p = .001. The Pre-
test proportion is statistically significant from a H0 of .5,
p = .002, the Posttest proportion is not, p = .08).

In sum: in the Pretest there were no statistically signif-
icant effects of Task or Event on the fit of the models and
overall the additive model provided better fit to data. In
the Posttest the models provided similar fit, except that
there were indications that the multiplicative model pro-
vided somewhat better fit in the risk task with a conjunc-
tive frame (i.e., as supported by the pattern in Fig. 4D and
the significantly lower MSE for the multiplicative model in
this condition). In the following, we examine the perfor-
mance in the Posttest more carefully by illustrating the
strategies and performance by individual participants and
by analyzing the residuals between the judgments and
the normative response.
2.2.3. Examples of individual strategies
Fig. 5 illustrates the performance by individual partici-

pants in the multiple-cue judgment task in a disjunctive
frame and Fig. 6 illustrates the performance by the individ-
ual participants in the risk task in a conjunctive frame (the
other two cells are similar, but for space reasons we refrain
from producing them here). Fig. 5 illustrates that, although
performance in the Posttest with disjunctive frame was
impressive, most of the functions preserve the accelerated
shape with over-estimation for the high values that is
characteristic of additive integration, and especially of
summation (e.g., ID 1).

This appears to define a strategy of proportional summa-
tion, where the participants sum the risks and report some
proportion (e.g., 80%) of this sum to minimize the overes-
timation that would otherwise occur (see predictions for
summation in the larger panel of Fig. 5). Two exceptions
are ID 20 and ID 30, which rely on a strategy of truncated
summation, where summation is used up to a ceiling, after
which all higher sums are truncated at this level, close to
.70. These participants seem to have learned from the
training that summation is a good approximation of the
criterion, but that the criterion values never go higher than
.70.

In Fig. 6, we see that in the risk task with conjunctive
frame, at least, some of the participants seem to reproduce
the normative values (e.g., ID 9 and ID 34), while other par-
ticipants still follow an additive strategy in the posttest,
with deviations that are characteristic of the mean heuris-
tic (e.g., ID 12 and ID 22). Notably, the risk task with con-
junctive frame is the only condition where there are signs
of some participants truly approximating the normative
combination and indeed, as we have seen, this was the
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only cell in Experiment 1 where the multiplicative model
provided better fit.

2.2.4. Residual analysis
To further analyze the Posttest judgments, we investi-

gated the residuals between judgments and the normative
multiplicative model. If participants rely on multiplicative
combination, we should expect these residuals to be small
and nonsystematic; randomly hovering around 0 at all lev-
els of the normative value. However, as illustrated in
Fig. 1C, in the disjunctive frame use of an additive heuristic
should produce a nonlinear pattern of residuals, with lar-
ger deviations for the higher normative values: viz. overes-
timation in the case of the summation heuristic and
underestimation in the case of the mean heuristic. The
residuals predicted if participants use summation are
therefore positively correlated with the normative values
(more positive residuals, the higher the normative value)
and the residuals predicted if they use the mean heuristics
are negatively correlated with the normative values (more
negative residuals, the higher the normative value). The
residuals from use of the summation and the mean heuris-
tics are thus negatively correlated.

Fig. 7 plots the mean residuals between the judgments
and the criterion (the normative value) against the crite-
rion across all 41 items that were part of the posttest. In
all four posttest conditions, the residuals are not random,
but substantially and significantly correlated with the cri-
terion (the correlations are reported in the panels of
Fig. 7). With the disjunctive frame, the correlations are
positive with an accelerating trend that is suggestive of
the summation heuristic. For multiple-cue judgment with
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a disjunctive frame, the correlation between the mean
residuals from the normative response and the residuals
predicted by the summation heuristic was .603 (p < .001)
and for the risk judgments with a disjunctive frame this
correlation was .704 (p < .001). Because these correlations
are computed across means for each item, the correlations
could, in principle, be consistent with a majority respond-
ing in the normative manner, where the correlation is dri-
ven by only a few (or even one) participants that use
summation. However, the corresponding median correla-
tion is .308 for multiple-cue judgment and .359 for risk
judgment across individual participants (t18 = .754,
p = .461 for the difference between the multiple-cue and
risk conditions)6. Across all 20 participants with a disjunc-
tive frame the median correlation was .351 (t19 = 2.997,
p = .008, given H0 = 0). The residual analysis in Fig. 7 thus
6 The correlations were squared, but with preserved sign for the
direction of the relationship, before they were entered into the t-test. The
same holds for the corresponding analyses of correlations reported below.
allows us to reject the hypothesis that the improvement
with training observed with the disjunctive frame was
obtained primarily by a shift to the use of multiplication,
but instead suggests the use of some accommodation of
summation.

As illustrated in the lower panels of Fig. 7, with a con-
junctive frame the residuals are negatively correlated with
the criterion, suggestive of the use of a mean heuristic.
Across the 41 items in the posttest with a conjunctive
frame, for the multiple-cue judgments the correlation
between the mean residuals from the normative response
and the residuals predicted by the mean heuristic was
.829 (p < .001) and for the risk judgments this correlation
was .468 (p = .002). When the correlation is computed sep-
arately for each participant in the conjunctive frame, the
median correlation is .551 for multiple-cue judgment and
.193 for risk judgment (t18 = 1.96, p = .066 for this differ-
ence between the conditions). Across all 20 participants
with a conjunctive frame, the median correlation was
.283 (t19 = 3.221, p = .004, given H0 = 0). The residuals of
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most participants correlated with those predicted by the
mean heuristic, but as expected in view of the model fits,
this was less so with the risk task.

In sum, the results suggest four conclusions: First, with
both task contents and both frames the participants spon-
taneously addressed the tasks with an additive heuristic,
typically the mean heuristic as indicated by the bias in pre-
test (see Fig. 2).7 Second, in all conditions the participants
improved from a short training by reducing the initial bias.
Third, there were significant effects of task content on the
judgments. Whereas the conjunctive frame was more diffi-
cult than the disjunctive frame with multiple-cue judgment,
7 For space reasons we do not report a detailed residual analysis for the
Pretest data. However, in all four pretest conditions the residuals correlate
negatively with the normative value across the items (r = �.895, p < .001;
r = �.919, p < .001; r = �.355, p = .034; r = �.490, p = .002) and significantly
positively with the residuals predicted by the mean heuristic (r = .885,
p < .001; r = .909, p < .001; r = .379, p = .022; r = .505, p = .002). This is
consistent with use of the mean heuristic and, as noted in connection with
Fig. 2, the bias also suggests that most of the participants relied on the
mean heuristic.
the performance was similar with both frames with the risk
judgments. Only in the posttest with risk judgments in a
conjunctive frame, the multiplicative model provided better
fit to the data than the additive model. This suggests that the
similar performance for risk judgments both in disjunctive
and conjunctive frame was explained by improved perfor-
mance in the conjunctive frame caused by, at least some,
participants shifting to use of normative probability combi-
nation. With the disjunctive frame, it seems that the partic-
ipants instead turned to refinements of summation, notably
achieving a very similar level of performance. In other
words, in the posttests of all of the conditions participants
appreciated the interaction between the cues, but the ability
to perform multiplicative combination seems restricted to
risks in conjunctive frame.

More generally, we interpret the results as suggesting
that the participants typically started with the mean heu-
ristic. In the disjunctive frame, additional experience with
feedback led to a shift to variations of summation, often
across all four cues. In the conjunctive frame, the partici-
pants often stayed with the mean heuristic, except that
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with risk content some of the participants were able to
engage their analytic insights about probability and
multiplied.
3. Experiment 2: facilitating detection of the normative
rule

In order to make the risk task similar to a standard mul-
tiple-cue judgment task, in Experiment 1 there were
always 3 or 4 non-zero error sources, thus requiring the
combination of several error probabilities/cues. In Experi-
ment 2, we allowed from 1 to 4 non-zero error probabili-
ties. The availability of items with only two non-zero
error probabilities should facilitate the detection of the
multiplicative rule, especially in the conjunctive frame
(e.g., when 1, 1, .9, .9 gives criterion .81). In Experiment
2, we also compared a condition with low criterion proba-
bilities in the training phase to a condition with high crite-
rion probabilities in the training phase, where the latter
condition should facilitate detection of the multiplicative
rule by highlighting the region where summation and mul-
tiplication diverges.

It is also instructive to consider the case of only one
non-zero error probability, like, for example, 0, 0, 0, .1 in
the disjunctive frame or 1, 1, 1, .9 in the conjunctive frame.
If people rely on multiplication or on summation, these
items should be especially easy to learn, because the cor-
rect answer can be produced without combination, by
reporting the probability associated with the non-zero
error source (.1, and .9, respectively). However, if people
rely on a mean heuristic, these items should not be easier
than the other items because they still require the combi-
nation of 4 error probabilities. In sum: the aim of Experi-
ment 2 was to facilitate the detection of the normative
multiplicative combination rule by introducing items
where the detection and execution of multiplication
should be simpler and to investigate if the training range
for the criterion probabilities affected the ability to detect
and use the normative rule. In Experiment 2 we only con-
sidered a task content with probability (risk) content.
3.1. Methods

3.1.1. Participants
Participants were 40 undergraduate (16 male and 24

female) students from Uppsala University (M = 22.9 years,
Sd = 2.2). They received a movie voucher or course credits
as compensation for participating in the study.
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3.1.2. Design
Experiment 2 used a 2 � 2 � 2 split-plot design with

Frame (conjunction/disjunction) and Training range
(high/low) as between-subjects variable and Training (pre-
test/posttest) as within-subjects variable.

3.1.3. Materials and procedure
Experiment 2 used the same basic procedure as Exper-

iment 1 with a computerized experiment consisting of
three parts; pretest, training and posttest. Participants per-
formed the same tasks as in the Risk-condition of Experi-
ment 1 and were asked to assess the probability of an
error-free production (conjunctive frame) or the probabil-
ity of at least one error (disjunctive frame) in the produc-
tion of a whisky bottle given the probability of no error
(conjunctive frame) or the probability of an error (disjunc-
tive frame) in each of four independent production steps
(see Fig. 1). Stimulus for the pre- and post-tests was cre-
ated by orthogonally combining the cue values for each
of the four cues (C1: 0, .25, .5; C2: 0, .2, .4; C3: .0, .02;
C4: 0, .01) giving a total of 36 items with a criterion range
of [0, .71] and [.29, 1.0] in the disjunctive and conjunctive
conditions respectively. Four sets of 30 items, two for the
high condition and two for the low condition, were created
as stimulus for training by randomly drawing error-free
probabilities for each of the four cues with the constraint
that the total error-free probability should be on the range
[.2, .5] in the low condition and [.5, .8] in the high condi-
tion. In the low condition cue values were drawn on
[0, .1] for all four cues and in the high condition cue values
were drawn on [.30, .40] for cue 1 and 2 and [0, .3] for cue 3
and 4. Participants in two conditions were randomly
assigned to one of the two training sets for that condition.
In pre- and post-test participants judged the 36 items once
without feedback and in training participants received
feedback on the correct probability after each of the 30
judgments. As in Experiment 1 all four cues were pre-
sented simultaneously with cues C1–C4 occupying the pro-
duction steps A–D respectively and with presentation
order within each part of the experiment randomized for
each participant.

3.2. Results and discussion

As illustrated in Table 2, which presents the analysis of
performance (RMSD) in Experiment 2, the only statistically
significant effect was the improved performance from
Table 2
Results of a 3-way repeated-measures ANOVA on performance (Root Mean Squa
between-subjects variables and training (pretest vs. posttest) is a within-subjects
highlighted in bold characters.

SS df

Frame 0.0210 1
Training range 0.0125 1
Frame � Training range 0.004 1
Error 0.457 36
Training 0.079 1
Training � Frame 0.010 1
Training � Training range 0.004 1
Three-way interaction 0.001 1
Error 0.178 36
pretest to posttest. The models in Eqs. (5) and (6) were fit-
ted to the individual judgments, separately for the Pretest
and the Posttest, in the same way as in Experiment 1. The
model fits and the best-fitting parameters are summarized
in Table A2 of Appendix. The model fit for both models for
each individual participant is presented in Fig. 8. Both the
measures for model fit and the parameters were character-
ized by skewed distributions and heterogeneous variance,
requiring the use of on nonparametric statistics.

Fig. 8A and B illustrates that in contrast to in Experi-
ment 1, in the Pretest there were no large differences in
the fit of the multiplicative model and the additive model.
Fig. 8A and B are more similar to Fig. 4C and D for the Post-
test in Experiment 1. There were no statistically significant
main effects of Range on the model fit for the multiplica-
tive and the additive models (Mann–Whitney Tests, all
ps > .155), but the additive model provided better fit than
the multiplicative model in the disjunctive condition
(Mann–Whitney, N = 40, U = 59, Z = 3.801, p < .001). There
was no significant difference in the model fit for the mul-
tiplicative and the additive model in three out of the four
cells (Wilcoxon Test all ps > .501), although in the cell with
a low training range and conjunctive frame the multiplica-
tive model provided slightly better fit (Wilcoxon Test,
N = 10, T = 8, Z = 1.987, p = .047). In general, the differences
are modest and across all four cells the difference in model
fit does not reach statistical significance (Wilcoxon Test,
N = 40, T = 343, Z = .901, p = .368).

Fig. 8C and D illustrates that in the Posttest there appear
to be more consistent differences between the models.
There are no significant differences in the model fit for
the multiplicative model as a function of Range or Event
(Mann–Whitney Tests, both ps > .113), no significant effect
of Range on the model fit for the additive model (Mann–
Whitney Test, N = 40, U = 183, Z = .446, p = .655), but a sig-
nificant effect of Event (Mann–Whitney Test, N = 40, U = 6,
Z = 5.234, p < .001). The additive model thus provided sig-
nificantly poorer fit to the data in the conjunctive than in
the disjunctive condition. As suggested by Fig. 8C and D,
there were no difference in model fit between the multipli-
cative and the additive models in the disjunctive frame
(Wilcoxon Test, N = 20, T = 73, Z = 1.194, p = .232), but sig-
nificantly better fit for the multiplicative model in the con-
junctive frame (Wilcoxon Test, N = 20, T = 42, Z = 2.352,
p = .019). In sum: there was little difference in the model
fits, except that in the Posttest with a conjunctive frame,
the multiplicative model became superior.
re Deviation, RMSD) in Experiment 2, where frame and training range are
variable with effect size (partial g2

p). The statistically significant effect is

MS F p g2
p

0.021 1.653 .207 0.044
0.012 0.984 .328 0.027
0.004 0.293 .592 0.008
0.013
0.079 16.008 .000 0.308
0.010 1.925 .174 0.051
0.004 0.745 .394 0.020
0.001 0.200 .657 0.005
0.005
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Fig. 8. The model fit in terms of Mean Square Error (MSE) between predictions and data for the multiplicative model on the x-axis and for the additive
model on the y-axis, separately for each individual participant in each condition of Experiment 2. Data points above the identity line indicate better fit for
the multiplicative model and data points below the identity line better fit for the additive model.
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Because there were no significant effects of Range on
performance, the two range conditions were collapsed in
the residual analysis. We, however, performed separate
analyses for each of the two frames (Disjunction vs. Con-
junction), considering that Experiment 1 suggested quali-
tatively different strategies with opposite, and indeed
potentially cancelling, biases. Fig. 9 presents the mean
residuals from the normative response, separately for the
Pretest and the Posttest with both frames, but here plotted
as a function not of the criterion but as a function of num-
ber of error sources (1, . . .,4) with 95% confidence intervals.
Fig. 9 suggest the same qualitative pattern as in Experi-
ment 1. In the pretest with the disjunctive frame
(Fig. 9A) there is a significant trend in the mean residuals
and all four mean residuals differ significantly from 0, an
underestimation consistent with use of a mean heuristic
(Fig. 1B). The median correlation between the residuals
and the residuals predicted by a mean heuristic across
the 36 items at the level of individual participants was
.141, thus in the same direction but not significantly differ-
ent from a population mean of 0 (t19 = 1.383, p = .183,
given H0 = 0). In the posttest with the disjunctive frame
(Fig. 9B), and despite the improved performance, the mean
residuals are still significantly heterogonous with three out
of four mean residuals deviating significantly from 0, but
now in the direction predicted by use of some modification
of summation. The median correlation between the resid-
uals and the residuals predicted by summation across the
36 items at the level of individual participants was .463,
significantly different from a population mean of 0 in the
direction predicted by summation (t19 = 4.459, p < .001,
given H0 = 0). Also as expected if the participants rely on
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some variety of summation, the items with one error proba-
bility are much easier than those with 3 or 4 non-zero error
probabilities, requiring more combination of information.

In the pretest with the conjunctive frame (Fig. 9C), per-
formance is poor with significantly increasing mean resid-
uals, three out of four of which differ significantly from 0.
The median correlation between the residuals and the
residuals predicted by a mean heuristic at the level of indi-
vidual participants was .375 (t19 = 3.340, p = .003, given
H0 = 0).8 Performance improves considerably in the posttest
(Fig. 9D). In contrast to in the disjunctive posttest, the mean
residuals in the conjunctive posttest are not significantly dif-
ferent and three out of four confidence intervals include 0.
The median correlation between the residuals and the resid-
uals predicted by a mean heuristic at the level of individual
participants was .203 (t19 = 1.255, p = .224, given H0 = 0). The
judgments appear about equally biased and variable regard-
less of the number of non-zero error probabilities, which is
suggestive of some strategy that always combines all 4 prob-
abilities. In other words, in contrast to in Fig. 9B, the residu-
als with one non-zero error source are not more accurate
and clearly less variable than the residuals with 4 non-zero
error sources. As in Experiment 1, the only condition consis-
tent with a shift toward multiplication is the conjunctive
posttest with a risk judgment, while at the same time the
participants with a disjunctive frame achieve comparable
performance by adapting a summation heuristic.

The results of Experiment 2 suggest three conclusions:
First, when the task was simplified by also allowing items
with only one or two nonzero error-sources, already in the
pretest the participants disclosed appreciation for the
interaction of the risks, before they had received any feed-
back. It is worth contrasting this with the typical result in
other multiple-cue judgment tasks, where people often
have great difficulty with detecting and implementing
cue interactions also after extensive experience or labora-
tory training (Karelaia & Hogarth, 2008). Second, consis-
tently with Experiment 1, the only condition for which
multiplicative combination was supported by the model
fits and the residual analysis was the posttest with con-
junctive frame. In all conditions, the participants thus
revealed a spontaneous qualitative insight that the cues
interact in a risk judgment task, but only with a conjunc-
tive frame the data was consistent with performing a mul-
tiplication. Third, the performance in this condition was
however easily matched by use of a summation heuristic
in the disjunctive frame.
4. Experiment 3: with (not against) the cognitive
constraints

Experiments 1 and 2 indicate that people have the abil-
ity to approximate multiplicative combination of cues by
modifications of additive heuristics. Under certain circum-
stances they are also able to implement multiplicative
8 Note that although the residuals predicted by a mean heuristic are a
positive function of the number of error sources, as illustrated in Figure 5C,
the predicted residuals are a negative function of the criterion, as illustrated
in Fig. 1D. This is because with a conjunctive frame, more error sources go
with lower probabilities.
combination. Nonetheless, it seems that people have great
difficulty with implementing truly multiplicative combina-
tion of multiple error-sources. In Experiment 3, we there-
fore tried to aid people’s risk combination by framing the
task in a format making it possible to arrive at the norma-
tive answer by summation, which is better in accord with a
predisposition for linear additive combination. In addition,
Experiment 3 introduces an analogue format where risks
are illustrated graphically. This format is similar to the icon
arrays previously shown to improve judgments of risk
(Galesic, Garcia-Retamero, & Gigerenzer, 2009) for people
low on Numeracy. Thus, the analogue format might serve
to facilitate the multiplicative risk combination.

4.1. Method

4.1.1. Participants
Participants were 36 undergraduate (12 male and 24

female) students from Uppsala University (M = 23.0 years,
Sd = 3.1). They received a movie voucher or course credits
as compensation for participating in the study.

4.1.2. Design
Experiment 3 used a 3 � 2 split-plot design with Scale

(numeric/analogue/log) as between-subjects variable and
Training (pretest/posttest) as within-subjects variable.

4.1.3. Materials and procedure
Experiment 2 used the same basic procedure as Exper-

iment 1 and 2 with a computerized experiment consisting
of three parts; pretest, training and posttest. Participants
performed the same tasks as in the risk/disjunctive frame
condition of Experiment 1. In the numeric condition the
risk of an error was presented in the same numerical
format as in Experiment 1 and 2. In the log condition
the risk was transformed to a logarithmic scale
using plog ¼ �log2ð1� pnumericÞ � 100, thus allowing risks to
be combined additively. The log scale was presented to
the participants as a measure of risk that runs from 0 (no
risk) to 999 (practically certain of an error) and that the
task was to use the four separate risk estimates to assess
the overall risk of an error in the product. Participants were
provided with examples of these risk scores and it was
emphasized that they were not percentages.

Finally, in the analogue condition the risk was pre-
sented in a graphical format where a green horizontal
bar was colored red to a proportion corresponding to the
risk of each of the four steps and the total risk. Thus a full
green bar indicated a 0 probability of an error while a full
red bar indicated a probability of an error of 1. In the
numeric and log conditions participants gave their answer
by entering a numerical value corresponding to the total
risk while participants in the analogue condition created
a horizontal red bar, by clicking on the appropriate height
of a green bar, to indicate their estimate of total risk.

The 36 items used as stimulus for the pretest were cre-
ated by a uniform random draw of probabilities on the
range [0, .5], for the four cues, with the constraint that
the total risk should be on the interval [.2, .75]. Risks for
each production step were rounded off to multiples of
.05. Training used 30 items created by a uniform random
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Fig. 9. Mean residuals with 95% confidence intervals from the output of the normative (multiplicative) rule, as a function of the number of non-zero error
sources in the judgment item, for the pretest and the posttest and the conjunctive and disjunctive frames in Experiment 2, together with the outcome of a
non-parametric Kruskal–Wallis test. The error bars refer to 95% confidence intervals (N = 20).
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draw of probabilities on the range [0, .4], for the four cues,
with the constraint that the total risk should be on the
interval [.2, .6]. Finally, the posttest used the 36 items from
the pretest and five additional items with a total risk smal-
ler than .1 and thus requiring extrapolation. The cues were
presented as in the two previous experiments and the pre-
sentation order of items was randomized for each partici-
pant within each part of the experiment.

4.2. Results and discussion

Because of the introduction of a log scale in Experiment
3 it proved necessary to analyze the performance (RMSD)
with non-parametric statistical tests. Two Mann–Whitney
U-tests showed no statistically significant difference
between the numeric and the analogue conditions, neither
in the Pre- or the Posttest (p > .6 in both cases). These two
conditions collapsed however differ significantly in perfor-
mance from the condition with the log scale, both in the
pretest (U = 83.000, Z = 2.030, p = .042, N1 = 24, N2 = 12)
and in the Posttest (U = 6.000, Z = 4.418, p < .001, N1 = 23,
N2 = 11). As illustrated in Fig. 10A, performance with the
log scale was better both in the Pretest and the Posttest.
Performance also improved from the Pretest to the Posttest
with both the numerical format (Wilcoxon test: T = 11,
3.863, p < .001, N = 23) and the log format (Wilcoxon test:
T = 6, 2.191, p = .028, N = 10).

As illustrated by the mean residuals in Fig. 10B–E, with
both formats the participants start off with the bias and the
negative correlation between the residuals and the norma-
tive criterion predicted by a mean heuristic (Panels 10B to
10E report the correlations between the residuals and the
criterion across the items plotted in the figure.) The med-
ian correlation between residuals and criterion across the
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Fig. 10. Experiment 3: Panel A: Median performance in terms of Root Mean Square Deviation (RMSD) from the criterion with Interquartile index (boxes)
and min and max range (whiskers) (N = 24 for probability and N = 12 for the log scale) in the pre- and the posttest in conditions with a probability or a log
scale. Panels B–E: Mean residuals from the normative (multiplicative) probability rule, as a function of the rounded normative probability (rounded to 5, 15,
25, . . ..,95), for the pre- and the posttest of the two conditions, together with the outcome of a non-parametric Kruskal–Wallis test. The error bars refer to
95% confidence intervals (N = 24 for the probability condition and N = 12 for the log scale condition).
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36 items across individual participants in the pretest with
probability scale was �.224, in the direction predicted by
the mean heuristic, but not significantly different from a
population mean of 0 (t23 = 1.383, p = .180, given H0 = 0).
The corresponding median correlation in the pretest with
the log scale was �.153 (t9 = 3.178, p = .011, given H0 = 0).
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In the Posttest with the probability format the partici-
pants approximate the normative answers quite well.
However, the median correlation between the residuals
and the criterion across the 36 items at the level of individ-
ual participants in the posttest with probability scale was
.272 and significantly different from a population mean
of 0 (t23 = 7.422, p < .001, given H0 = 0). With the log scale,
in the posttest performance is virtually perfect with close
to 0 residuals. The median correlation between residuals
and criterion across the 36 items across individual partici-
pants in the posttest with log scale was �.031 (t9 = .762,
p = .468, given H0 = 0). It is clear from a comparison
between Fig. 10E and the other figures, in this and in the
previous experiments, that the only condition where
participants were able to implement the normative
combination of risks was with the additive log scale used
in Experiment 3.
5. General discussion

Although the traditional experimental paradigms on
multiple-cue judgment and probability reasoning tasks
share a strong resemblance there are surprisingly few
attempts to compare the two tasks directly. In this article,
we undertake such a comparison with a special eye to the
question of whether the propensity to rely on linear addi-
tive combination observed in studies of multiple-cue judg-
ment (e.g., Brehmer, 1994; Juslin et al., 2009; Karelaia &
Hogarth, 2008) extends also too formally similar probabil-
ity combination tasks. Although the different combination
strategies often correlate highly in these tasks, and despite
the presence of considerable individual differences, by the
use of computational modeling and residual analysis we
have been able to detect some systematic differences
between the tasks.

The results suggest three general conclusions. First,
most of the participants seem spontaneously to approach
both tasks by using additive heuristics. That is, in the pre-
test of the experiments most participants combine the
available information by means of simple additive heuris-
tics such as summing or averaging, although, as illustrated
in Experiment 2, when the task involves risk and items
with few error probabilities many of the participants
appear to appreciate spontaneously that the risks interact
in some way. The overall pattern of bias in the pretests
suggests that the most common default strategy is a mean
heuristic, which is consistent with previous research mul-
tiple-cue judgment (Brehmer, 1994; Juslin et al., 2009;
Karelaia & Hogarth, 2008) and probability combination
(Bar-Hillel, 1973).

Second, participants nonetheless seem to solve the two
types of tasks somewhat differently. With multiple-cue
content, the participants adapt to the task by using various
modifications of summation, whereas with risk content
more participants seem truly to turn to multiplicative
combination. The relative performance with disjunctive
frame and conjunctive frame in Experiment 1 was there-
fore different depending on the task content. With multi-
ple-cue judgments, the difficulty of the disjunctive and
conjunctive frames accorded with the order of difficulty
predicted by a summation heuristic, but not with risk judg-
ments. The only condition in Experiment 1 where both the
model fits and the residual analysis were consistent with
truly multiplicative integration, was in the Posttest for
risks in a conjunctive frame. This suggests that the Task
effect was that in the Posttest for risks in conjunctive
frame, and in contrast to in the other cells, many partici-
pants were able to perform multiplication.

Moreover, with the risk judgments in Experiment 2 the
fact that the model fits in Pretest were almost identical and
similar to the ones in the Posttest of Experiment 1, sug-
gests that participants had a spontaneous appreciation that
the risk sources do interact in some way. It is again worth
emphasizing that this does not occur in other multiple-cue
judgments tasks, where people often have great difficulty
with detecting and implementing cue interactions even
after extensive feedback and experience with the tasks
(Karelaia & Hogarth, 2008). This suggests that people do
have at least some qualitative insight into the need for
non-additive combination of multiple risks in a risk combi-
nation task, which may be present from start in a task that
makes it salient, or that is easily triggered already by a lit-
tle task experience.

This is consistent with the claim that the mind has little
trouble with sequentially adding up or averaging multiple
cues, but the sequential and capacity-constrained con-
trolled judgment process has great difficulty with captur-
ing more complex configural cue patterns, except in the
simple cases where this process can be amended by direct
retrieval of facts from long-term memory (Juslin et al.,
2008, 2011). For example, in a multiplicative task where
the impact of the individual cues is considered sequen-
tially, the impact of, say, the third cue on the criterion
has to be assessed not only in the light of the value of
the third cue, but with simultaneous attention to the effect
of the first cue and the effect of the second cue.

Our interpretation is that the simple cases where peo-
ple are able to truly achieve multiplicative combination
mainly correspond to items where the product can be pro-
duced or well approximated by successive explicit number
crunching of two numbers, for example, by retrieving the
declarative knowledge that probabilities of independent
events should be multiplied together with knowledge of
multiplicative facts (the ‘‘analytic route’’ to judgment dis-
cussed in Juslin et al. (2011); see Hammond, 1996, for a
discussion of analytic judgment). In all other conditions,
the residual analysis suggests additive approximations.
Many participants appear to approximate normative com-
bination strategy by modifying an additive heuristic, for
example, by using proportional summation or curtailed
summation.

It is noteworthy how well a risk summation heuristic
approximates normative risk combination, especially
when the individual risk sources are small (see Fig. 1B). It
is worth emphasizing that this good approximation holds
already in the case of perfect knowledge of the risk proba-
bilities (i.e., as when the exact probabilities are explicitly
specified to the participant, as in Fig. 1A). In Juslin et al.
(2009) we argued that linear additive approximations to
the multiplicative rules of probability theory may be
especially useful when the input probabilities to the
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combination rule are vague or noisy, as when estimated
from small samples, because linear additive combination
is often more robust to the effects of random noise than
multiplicative combination. In other words, if we in addi-
tion take into account that the risk probabilities may often
be vague or noisy, it may be even more difficult to detect
the ‘‘superiority’’ of the multiplicative combination rule
over summation. For many purposes, an agent may be just
as well off summing small and noisy risk probabilities.

Finally, only when the risk is represented in a format
that makes it possible to combine the error sources by
additive operations, as with the log-format in Experiment
3, the participants are able to achieve information combi-
nation that is truly normative. This testifies to the fact that,
although they do express some qualitative insight into the
interaction between the individual risk sources that
becomes relevant in a risk combination task, a key con-
straint on their ability to make perfectly normative judg-
ments refers to the mode of combination.

The position in regard to people’s ability to reason with
probability advocated here accordingly differs subtly from
the standard account in terms of dual process theories
(Evans, 2008), where a rapid but fallible intuitive system
is supervised and potentially corrected by an analytic sys-
tem that embodies our normative insights (Kahneman &
Frederick, 2002). The results from many experiments sug-
gest that people often do have a qualitative understanding
of the probability laws, but that they lack the ability to
combine probabilities according to multiplicative rules.
People thus in general appreciate that the prior probability
(or base-rate) is relevant to the posterior probability of an
Table A1
Median model fit for the multiplicative model (MSE(mult.)) and for the additive m
and judgments, along with the median best fitting parameters for the multiplicativ
the main effects in Experiment 1.

Event condition Block Measure

Disjunction Pretest MSE(mult.)
m
MSE(add.)
a

Posttest MSE(mult.)
m
MSE(add.)
a

Conjunction Pretest MSE(mult.)
m
MSE(add.)
a

Posttest MSE(mult.)
m
MSE(add.)
a

Main effect (task) Pretest MSE(mult.)
m
MSE(add.)
a

Posttest MSE(mult.)
m
MSE(add.)
a

event (e.g., Koehler, 1996), that, generally speaking, con-
junctions tend to be less probable than disjunctions
(Nilsson et al., 2009), or that overall risk is a non-additive
function of the individual risk components. This qualitative
understanding of basic properties of a stochastic environ-
ment, which in general is unlikely to take the exact ana-
lytic form of the rules in probability theory, may
nonetheless be a sufficient basis for applying linear heuris-
tics that allow the mind to approximate the rational learn-
ing algorithms captured by Bayesian models of cognition
(Oaksford & Chater, 2006). Both the rudimentary qualita-
tive normative insight about stochastic events and the
default linear additive combination of information may
well operate on an intuitive level and thus be independent
of any analytic insights of the form captured by probability
theory.
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Appendix A. Results for model fits and best-fitting
parameters

See Table A1 and A2.
odel (MSE(add.)) in terms of Mean Square Error (MSE) between predictions
e model (m) and for the additive model (a), for each of the four cells and for

Task condition Main effect (event)

Multiple-cue Risk

.027 .051 .039

.889 .843 .889

.007 .011 .010

.810 .575 .626

.002 .005 .003
1.048 1.074 1.048

.002 .004 .003

.806 .825 .813

.074 .058 .070

.437 .706 .547

.023 .013 .015

.187 .189 .187

.014 .004 .010

.61 .958 .907

.021 .025 .025

.164 .165 .164

.056 .055

.550 .706

.015 .012

.455 .384

.005 .004
1.002 1.007

.007 .016

.483 .471



Table A2
Median model fit for the multiplicative model (MSE(mult.)) and for the additive model (MSE(add.)) in terms of Mean Square Error (MSE) between predictions
and judgments, along with the median best fitting parameters for the multiplicative model (m) and for the additive model (a), for each of the four cells and for
the main effects in Experiment 2.

Event condition Block Measure Training condition Main effect (event)

Low range High range

Disjunction Pretest MSE(mult.) .020 .007 .011
m 1.020 1.011 1.011
MSE(add.) .006 .010 .008
a .831 .809 .816

Posttest MSE(mult.) .006 .003 .004
m 1.094 1.027 1.050
MSE(add.) .006 .003 .003
a .912 .858 .874

Conjunction Pretest MSE(mult.) .018 .015 .016
m .913 .932 .913
MSE(add.) .026 .029 .027
a .178 .174 .174

Posttest MSE(mult.) .010 .006 .009
m .969 .957 .969
MSE(add.) .031 .006 .029
a .173 .163 .169

Main effect (range) Pretest MSE(mult.) .019 .010
m .983 .991
MSE(add.) .014 .020
a .234 .244

Posttest MSE(mult.) .008 .003
m 1.065 .997
MSE(add.) .012 .011
a .510 .422
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